When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
1.9 |
6400 |
Burkholder et al. (2019) |
L |
1)
|
1.9 |
6400 |
Burkholder et al. (2015) |
L |
1)
|
1.8 |
6300 |
Brockbank (2013) |
L |
1)
|
1.9 |
6400 |
Sander et al. (2011) |
L |
1)
|
1.9 |
6300 |
Warneck (2006) |
L |
|
2.0 |
6600 |
Sander et al. (2006) |
L |
|
1.8 |
6300 |
Dohnal et al. (2006) |
L |
1)
|
1.7 |
5700 |
Fogg and Sangster (2003) |
L |
|
1.9 |
6300 |
Plyasunov and Shock (2000) |
L |
|
1.9 |
6200 |
Dubowski (1979) |
L |
1)
|
1.8 |
5900 |
Willey et al. (2017) |
M |
|
2.2 |
5500 |
O’Farrell and Waghorne (2010) |
M |
|
1.8 |
|
Vitenberg and Dobryakov (2008) |
M |
|
1.9 |
5800 |
Falabella et al. (2006) |
M |
11)
340)
|
1.9 |
|
Straver and de Loos (2005) |
M |
|
|
|
Cheng et al. (2004) |
M |
330)
|
1.1 |
|
Ueberfeld et al. (2001) |
M |
|
1.8 |
5800 |
Gupta et al. (2000) |
M |
|
1.3 |
|
Altschuh et al. (1999) |
M |
|
1.0 |
|
Eger et al. (1999) |
M |
14)
|
1.9 |
|
Merk and Riederer (1997) |
M |
|
8.3×10−1 |
|
Kaneko et al. (1994) |
M |
14)
|
1.9 |
|
Li and Carr (1993) |
M |
|
3.1 |
3900 |
Pividal et al. (1992) |
M |
|
1.9 |
|
Park et al. (1987) |
M |
|
1.9 |
6600 |
Snider and Dawson (1985) |
M |
|
2.0 |
|
Richon et al. (1985) |
M |
|
1.9 |
6000 |
Jones (1983) |
M |
1)
|
6.2 |
|
Mazza (1980) |
M |
|
1.9 |
|
Rytting et al. (1978) |
M |
|
2.3 |
|
Rohrschneider (1973) |
M |
|
2.1 |
|
Burnett (1963) |
M |
|
1.9 |
6500 |
Harger et al. (1950) |
M |
|
1.9 |
|
Butler et al. (1935) |
M |
|
4.7×10−2 |
|
Abraham and Acree (2007) |
V |
|
1.7 |
6300 |
Fukuchi et al. (2002) |
V |
|
1.3 |
|
Hwang et al. (1992) |
V |
|
|
6300 |
Abraham (1984) |
V |
|
1.9 |
6300 |
Plyasunov et al. (2001) |
T |
|
1.4 |
|
Yaws (2003) |
X |
238)
|
1.5 |
6400 |
Schaffer and Daubert (1969) |
X |
299)
|
2.0 |
|
Gaffney and Senum (1984) |
X |
391)
|
1.6 |
|
Timmermans (1960) |
X |
392)
|
1.7 |
|
Hayer et al. (2022) |
Q |
20)
|
6.7×10−1 |
|
Keshavarz et al. (2022) |
Q |
|
1.1 |
|
Duchowicz et al. (2020) |
Q |
|
3.1×10−1 |
|
Wang et al. (2017) |
Q |
81)
239)
|
2.0 |
|
Wang et al. (2017) |
Q |
81)
240)
|
2.3 |
|
Wang et al. (2017) |
Q |
81)
241)
|
1.6 |
|
Raventos-Duran et al. (2010) |
Q |
243)
244)
|
1.6 |
|
Raventos-Duran et al. (2010) |
Q |
245)
|
1.6 |
|
Raventos-Duran et al. (2010) |
Q |
246)
|
1.3 |
|
Gharagheizi et al. (2010) |
Q |
247)
|
1.1 |
|
Hilal et al. (2008) |
Q |
|
1.8 |
|
Modarresi et al. (2007) |
Q |
68)
|
|
6500 |
Kühne et al. (2005) |
Q |
|
2.0 |
|
Yaffe et al. (2003) |
Q |
249)
250)
|
1.4 |
|
Yao et al. (2002) |
Q |
230)
|
1.4 |
|
English and Carroll (2001) |
Q |
231)
232)
|
1.2 |
|
Katritzky et al. (1998) |
Q |
|
1.3 |
|
Yaws et al. (1997) |
Q |
|
1.4 |
|
Russell et al. (1992) |
Q |
280)
|
1.4 |
|
Suzuki et al. (1992) |
Q |
233)
|
1.6 |
|
Nirmalakhandan and Speece (1988) |
Q |
|
2.0 |
|
Duchowicz et al. (2020) |
? |
21)
186)
|
1.9 |
|
Bartelt-Hunt et al. (2008) |
? |
21)
|
|
6400 |
Kühne et al. (2005) |
? |
|
1.2 |
|
Yaws (1999) |
? |
21)
|
8.2×10−1 |
|
Abraham and Weathersby (1994) |
? |
21)
|
1.2 |
|
Yaws and Yang (1992) |
? |
21)
|
1.9 |
|
Abraham et al. (1990) |
? |
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Abraham, M. H.: Thermodynamics of solution of homologous series of solutes in water, J. Chem. Soc. Faraday Trans. 1, 80, 153–181, doi:10.1039/F19848000153 (1984).
-
Abraham, M. H. & Acree, Jr., W. E.: Prediction of gas to water partition coefficients from 273 to 373 K using predicted enthalpies and heat capacities of hydration, Fluid Phase Equilib., 262, 97–110, doi:10.1016/J.FLUID.2007.08.011 (2007).
-
Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
-
Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
-
Altschuh, J., Brüggemann, R., Santl, H., Eichinger, G., & Piringer, O. G.: Henry’s law constants for a diverse set of organic chemicals: Experimental determination and comparison of estimation methods, Chemosphere, 39, 1871–1887, doi:10.1016/S0045-6535(99)00082-X (1999).
-
Bartelt-Hunt, S. L., Knappe, D. R. U., & Barlaz, M. A.: A review of chemical warfare agent simulants for the study of environmental behavior, Crit. Rev. Environ. Sci. Technol., 38, 112–136, doi:10.1080/10643380701643650 (2008).
-
Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
-
Burnett, M. G.: Determination of partition coefficients at infinite dilution by the gas chromatographic analysis of the vapor above dilute solutions, Anal. Chem., 35, 1567–1570, doi:10.1021/AC60204A007 (1963).
-
Butler, J. A. V., Ramchandani, C. N., & Thomson, D. W.: The solubility of non-electrolytes. Part I. The free energy of hydration of some aliphatic alcohols, J. Chem. Soc., pp. 280–285, doi:10.1039/JR9350000280 (1935).
-
Cheng, W.-H., Chou, M.-S., Perng, C.-H., & Chu, F.-S.: Determining the equilibrium partitioning coefficients of volatile organic compounds at an air–water interface, Chemosphere, 54, 935–942, doi:10.1016/J.CHEMOSPHERE.2003.08.038 (2004).
-
Dohnal, V., Fenclová, D., & Vrbka, P.: Temperature dependences of limiting activity coefficients, Henry’s law constants, and derivative infinite dilution properties of lower (C1-C5) 1-alkanols in water. critical compilation, correlation, and recommended data, J. Phys. Chem. Ref. Data, 35, 1621–1651, doi:10.1063/1.2203355 (2006).
-
Dubowski, K. M.: Breath-alcohol simulators: Scientific basis and actual performance, J. Anal. Technol., 3, 177–182, doi:10.1093/JAT/3.5.177 (1979).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
Eger, II, E. I., Ionescu, P., Laster, M. J., Gong, D., Hudlicky, T., Kendig, J. J., Harris, R. A., Trudell, J. R., & Pohorille, A.: Minimum alveolar anesthetic concentration of fluorinated alkanols in rats: relevance to theories of narcosis, Anesth. Analg., 88, 867–876, doi:10.1213/00000539-199904000-00035 (1999).
-
English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
-
Falabella, J. B., Nair, A., & Teja, A. S.: Henry’s constants of 1-alkanols and 2-ketones in salt solutions, J. Chem. Eng. Data, 51, 1940–1945, doi:10.1021/JE0600956 (2006).
-
Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
-
Fukuchi, K., Miyoshi, K., Watanabe, T., Yonezawa, S., & Arai, Y.: Measurement and correlation of infinite dilution activity coefficients of alkanol or ether in aqueous solution, Fluid Phase Equilib., 194-197, 937–945, doi:10.1016/S0378-3812(01)00675-6 (2002).
-
Gaffney, J. S. & Senum, G. I.: Peroxides, peracids, aldehydes, and PANs and their links to natural and anthropogenic organic sources, in: Gas-Liquid Chemistry of Natural Waters, edited by Newman, L., pp. 5–1–5–7, NTIS TIC-4500, UC-11, BNL 51757 Brookhaven National Laboratory (1984).
-
Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
-
Gupta, A. K., Teja, A. S., Chai, X. S., & Zhu, J. Y.: Henry’s constants of n-alkanols (methanol through n-hexanol) in water at temperatures between 40∘C and 90∘C, Fluid Phase Equilib., 170, 183–192, doi:10.1016/S0378-3812(00)00350-2 (2000).
-
Harger, R. N., Raney, B. B., Bridwell, E. G., & Kitchel, M. F.: The partition ratio of alcohol between air and water, urine and blood; estimation and identification of alcohol in these liquids from analysis of air equilibrated with them, J. Biol. Chem., 183, 197–213, doi:10.1016/S0021-9258(18)56458-9 (1950).
-
Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
-
Jones, A. W.: Determination of liquid/air partition coefficients for dilute solutions of ethanol in water, whole blood, and plasma, J. Anal. Technol., 7, 193–197, doi:10.1093/JAT/7.4.193 (1983).
-
Kaneko, T., Wang, P. Y., & Sato, A.: Partition coefficients of some acetate esters and alcohols in water, blood, olive oil, and rat tissues, Occup. Environ. Med., 51, 68–72, doi:10.1136/OEM.51.1.68 (1994).
-
Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
-
Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Li, J. & Carr, P. W.: Measurement of water-hexadecane partition coefficients by headspace gas chromatography and calculation of limiting activity coefficients in water, Anal. Chem., 65, 1443–1450, doi:10.1021/AC00058A023 (1993).
-
Mazza, G.: Relative volatilities of some onion flavour components, Int. J. Food Sci. Technol., 15, 35–41, doi:10.1111/J.1365-2621.1980.TB00916.X (1980).
-
Merk, S. & Riederer, M.: Sorption of volatile C1 to C6 alkanols in plant cuticles, J. Exp. Bot., 48, 1095–1104, doi:10.1093/JXB/48.5.1095 (1997).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
-
O’Farrell, C. E. & Waghorne, W. E.: Henry’s law constants of organic compounds in water and n-octane at T = 293.2K, J. Chem. Eng. Data, 55, 1655–1658, doi:10.1021/JE900711H (2010).
-
Park, J. H., Hussam, A., Couasnon, P., Fritz, D., & Carr, P. W.: Experimental reexamination of selected partition coefficients from Rohrschneider’s data set, Anal. Chem., 59, 1970–1976, doi:10.1021/AC00142A016 (1987).
-
Pividal, K. A., Birtigh, A., & Sandler, S. I.: Infinite dilution activity coefficients for oxygenate systems determined using a differential static cell, J. Chem. Eng. Data, 37, 484–487, doi:10.1021/JE00008A025 (1992).
-
Plyasunov, A. V. & Shock, E. L.: Thermodynamic functions of hydration of hydrocarbons at 298.15K and 0.1MPa, Geochim. Cosmochim. Acta, 64, 439–468, doi:10.1016/S0016-7037(99)00330-0 (2000).
-
Plyasunov, A. V., O’Connell, J. P., Wood, R. H., & Shock, E. L.: Semiempirical equation of state for the infinite dilution thermodynamic functions of hydration of nonelectrolytes over wide ranges of temperature and pressure, Fluid Phase Equilib., 183–184, 133–142, doi:10.1016/S0378-3812(01)00427-7 (2001).
-
Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
-
Richon, D., Sorrentino, F., & Voilley, A.: Infinite dilution activity coefficients by the inert gas stripping method: extension to the study of viscous and foaming mixtures, Ind. Eng. Chem. Process Des. Dev., 24, 1160–1165, doi:10.1021/I200031A044 (1985).
-
Rohrschneider, L.: Solvent characterization by gas-liquid partition coefficients of selected solutes, Anal. Chem., 45, 1241–1247, doi:10.1021/AC60329A023 (1973).
-
Russell, C. J., Dixon, S. L., & Jurs, P. C.: Computer-assisted study of the relationship between molecular structure and Henry’s law constant, Anal. Chem., 64, 1350–1355, doi:10.1021/AC00037A009 (1992).
-
Rytting, J. H., Huston, L. P., & Higuchi, T.: Thermodynamic group contributions for hydroxyl, amino, and methylene groups, J. Pharm. Sci., 69, 615–618, doi:10.1002/JPS.2600670510 (1978).
-
Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
-
Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
-
Schaffer, D. L. & Daubert, T. E.: Gas-liquid chromatographic determination of solution properties of oxygenated compounds in water, Anal. Chem., 41, 1585–1589, doi:10.1021/AC60281A016 (1969).
-
Snider, J. R. & Dawson, G. A.: Tropospheric light alcohols, carbonyls, and acetonitrile: Concentrations in the southwestern United States and Henry’s law data, J. Geophys. Res., 90, 3797–3805, doi:10.1029/JD090ID02P03797 (1985).
-
Straver, E. J. M. & de Loos, T. W.: Determination of Henry’s law constants and activity coefficients at infinite dilution of flavor compounds in water at 298 K with a gas-chromatographic method, J. Chem. Eng. Data, 50, 1171–1176, doi:10.1021/JE0495942 (2005).
-
Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
-
Timmermans, J.: The Physico-Chemical Constants of Binary Systems in Concentrated Solutions, Vol. 4, Interscience Publisher, Inc., New York, NY (1960).
-
Ueberfeld, J., Zbinden, H., Gisin, N., & Pellaux, J. P.: Determination of Henry’s constant using a photoacoustic sensor, J. Chem. Thermodyn., 33, 755–764, doi:10.1006/JCHT.2000.0776 (2001).
-
Vitenberg, A. G. & Dobryakov, Y. G.: Gas-chromatographic determination of the distribution ratios of volatile substances in gas-liquid systems, Russ. J. Appl. Chem., 81, 339–359, doi:10.1134/S1070427208030014 (2008).
-
Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
-
Warneck, P.: A note on the temperature dependence of Henry’s Law coefficients for methanol and ethanol, Atmos. Environ., 40, 7146–7151, doi:10.1016/J.ATMOSENV.2006.06.024 (2006).
-
Willey, J. D., Powell, J. P., Avery, G. B., Kieber, R. J., & Mead, R. N.: Use of experimentally determined Henry’s Law and salting-out constants for ethanol in seawater for determination of the saturation state of ethanol in coastal waters, Chemosphere, 182, 426–432, doi:10.1016/J.CHEMOSPHERE.2017.05.044 (2017).
-
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
-
Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
-
Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
-
Yaws, C. L., Hopper, J. R., Sheth, S. D., Han, M., & Pike, R. W.: Solubility and Henry’s law constant for alcohols in water, Waste Manage., 17, 541–547, doi:10.1016/S0956-053X(97)10057-5 (1997).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
1) |
A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented. |
11) |
Measured at high temperature and extrapolated to T⊖ = 298.15 K. |
14) |
Value at T = 310 K. |
20) |
Calculated using machine learning matrix completion methods (MCMs). |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
81) |
Value at T = 288 K. |
186) |
Experimental value, extracted from HENRYWIN. |
230) |
Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm. |
231) |
English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown. |
232) |
Value from the training dataset. |
233) |
Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details. |
238) |
Value given here as quoted by Gharagheizi et al. (2010). |
239) |
Calculated using linear free energy relationships (LFERs). |
240) |
Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC). |
241) |
Calculated using COSMOtherm. |
243) |
Value from the training dataset. |
244) |
Calculated using the GROMHE model. |
245) |
Calculated using the SPARC approach. |
246) |
Calculated using the HENRYWIN method. |
247) |
Calculated using a combination of a group contribution method and neural networks. |
249) |
Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here. |
250) |
Value from the training set. |
280) |
Value from the training set. |
299) |
Value given here as quoted by Staudinger and Roberts (1996). |
330) |
It was found that Hs changes with the concentration of the solution. |
340) |
Values for salt solutions are also available from this reference. |
391) |
Value given here as quoted by Gaffney et al. (1987). |
392) |
Value given here as quoted by Hine and Weimar (1965). |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|