When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | C5H12O |
TRIVIAL NAME:
|
isopentanol
|
CAS RN: | 123-51-3 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | PHTQWCKDNZKARW-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
8.2×10−1 |
8000 |
Brockbank (2013) |
L |
1)
|
7.0×10−1 |
|
Plyasunov and Shock (2000) |
L |
|
6.7×10−1 |
6900 |
Ammari and Schroen (2019) |
M |
11)
|
8.2×10−1 |
7700 |
Fenclová et al. (2010) |
M |
1)
|
3.3×10−1 |
|
van Ruth et al. (2002) |
M |
14)
|
3.2×10−1 |
|
van Ruth and Villeneuve (2002) |
M |
14)
363)
|
3.2×10−1 |
|
van Ruth et al. (2001) |
M |
14)
|
7.5×10−1 |
|
Yaws (2003) |
X |
259)
|
7.1×10−1 |
|
Dupeux et al. (2022) |
Q |
260)
|
1.6 |
|
Keshavarz et al. (2022) |
Q |
|
1.2×10−1 |
|
Abney (2021) |
Q |
401)
|
5.3×10−1 |
|
Duchowicz et al. (2020) |
Q |
300)
|
1.8×10−1 |
|
Wang et al. (2017) |
Q |
81)
239)
|
7.4×10−1 |
|
Wang et al. (2017) |
Q |
81)
240)
|
1.3 |
|
Wang et al. (2017) |
Q |
81)
241)
|
6.2×10−1 |
|
Raventos-Duran et al. (2010) |
Q |
244)
272)
|
4.9×10−1 |
|
Raventos-Duran et al. (2010) |
Q |
245)
|
7.8×10−1 |
|
Raventos-Duran et al. (2010) |
Q |
246)
|
4.6×10−1 |
|
Hilal et al. (2008) |
Q |
|
1.1 |
|
Modarresi et al. (2007) |
Q |
68)
|
|
7600 |
Kühne et al. (2005) |
Q |
|
6.1×10−1 |
|
Yaffe et al. (2003) |
Q |
249)
273)
|
7.0×10−1 |
|
Yao et al. (2002) |
Q |
230)
|
4.7×10−1 |
|
English and Carroll (2001) |
Q |
231)
232)
|
6.9×10−1 |
|
Nirmalakhandan et al. (1997) |
Q |
|
7.4×10−1 |
|
Yaws et al. (1997) |
Q |
|
7.0×10−1 |
|
Duchowicz et al. (2020) |
? |
21)
186)
|
|
8200 |
Kühne et al. (2005) |
? |
|
7.4×10−1 |
|
Yaws (1999) |
? |
21)
|
7.0×10−1 |
|
Abraham et al. (1990) |
? |
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Abney, C. A.: Predicting Henry’s Law constants of volatile organic compounds present in bourbon using molecular simulations, Master’s thesis, University of Louisville, Kentucky, USA, doi:10.18297/etd/3440 (2021).
-
Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
-
Ammari, A. & Schroen, K.: Effect of ethanol and temperature on partition coefficients of ethyl acetate, isoamyl acetate, and isoamyl alcohol: Instrumental and predictive investigation, J. Chem. Eng. Data, 64, 3224–3230, doi:10.1021/ACS.JCED.8B01125 (2019).
-
Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
-
English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
-
Fenclová, D., Dohnal, V., Vrbka, P., & ehk, K.: Temperature dependence of limiting activity coefficients, Henry’s law constants, and related infinite dilution properties of branched pentanols in water. Measurement, critical compilation, correlation, and recommended data, J. Chem. Eng. Data, 55, 3032–3043, doi:10.1021/JE901063S (2010).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Nirmalakhandan, N., Brennan, R. A., & Speece, R. E.: Predicting Henry’s law constant and the effect of temperature on Henry’s law constant, Wat. Res., 31, 1471–1481, doi:10.1016/S0043-1354(96)00395-8 (1997).
-
Plyasunov, A. V. & Shock, E. L.: Thermodynamic functions of hydration of hydrocarbons at 298.15K and 0.1MPa, Geochim. Cosmochim. Acta, 64, 439–468, doi:10.1016/S0016-7037(99)00330-0 (2000).
-
Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
-
van Ruth, S. M. & Villeneuve, E.: Influence of β-lactoglobulin, pH and presence of other aroma compounds on the air/liquid partition coefficients of 20 aroma compounds varying in functional group and chain length, Food Chem., 79, 157–164, doi:10.1016/S0308-8146(02)00124-3 (2002).
-
van Ruth, S. M., Grossmann, I., Geary, M., & Delahunty, C. M.: Interactions between artificial saliva and 20 aroma compounds in water and oil model systems, J. Agric. Food Chem., 49, 2409–2413, doi:10.1021/JF001510F (2001).
-
van Ruth, S. M., de Vries, G., Geary, M., & Giannouli, P.: Influence of composition and structure of oil-in-water emulsions on retention of aroma compounds, J. Sci. Food Agric., 82, 1028–1035, doi:10.1002/JSFA.1137 (2002).
-
Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
-
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
-
Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
-
Yaws, C. L., Hopper, J. R., Sheth, S. D., Han, M., & Pike, R. W.: Solubility and Henry’s law constant for alcohols in water, Waste Manage., 17, 541–547, doi:10.1016/S0956-053X(97)10057-5 (1997).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
1) |
A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented. |
11) |
Measured at high temperature and extrapolated to T⊖ = 298.15 K. |
14) |
Value at T = 310 K. |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
81) |
Value at T = 288 K. |
186) |
Experimental value, extracted from HENRYWIN. |
230) |
Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm. |
231) |
English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown. |
232) |
Value from the training dataset. |
239) |
Calculated using linear free energy relationships (LFERs). |
240) |
Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC). |
241) |
Calculated using COSMOtherm. |
244) |
Calculated using the GROMHE model. |
245) |
Calculated using the SPARC approach. |
246) |
Calculated using the HENRYWIN method. |
249) |
Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here. |
259) |
Value given here as quoted by Dupeux et al. (2022). |
260) |
Calculated using the COSMO-RS method. |
272) |
Value from the validation dataset. |
273) |
Value from the test set. |
300) |
Value from the test set for true external validation. |
363) |
Effective Henry's law constants at several pH values are provided by van Ruth and Villeneuve (2002). Here, only the value at pH = 3 is shown. |
401) |
Calculated for an aqueous solution containing 60 % ethanol by volume as the solvent. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|