When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | C6H5OH |
TRIVIAL NAME:
|
phenol
|
CAS RN: | 108-95-2 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | ISWSIDIOOBJBQZ-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
1.8×101 |
3000 |
Schwardt et al. (2021) |
L |
1)
|
2.2×101 |
8900 |
Brockbank (2013) |
L |
1)
|
2.2×101 |
9800 |
Ji et al. (2008) |
M |
|
2.8×101 |
2700 |
Guo and Brimblecombe (2007) |
M |
|
6.4 |
7700 |
Feigenbrugel et al. (2004b) |
M |
|
3.0×101 |
5900 |
Harrison et al. (2002) |
M |
|
1.9×101 |
|
Sheikheldin et al. (2001) |
M |
12)
|
> 4.2 |
|
Altschuh et al. (1999) |
M |
|
8.1×101 |
7400 |
Tabai et al. (1997) |
M |
11)
|
4.2 |
|
Heal et al. (1995) |
M |
375)
|
1.6×101 |
6000 |
Dohnal and Fenclová (1995) |
M |
|
1.5×101 |
|
Tremp et al. (1993) |
M |
12)
|
1.7×101 |
6100 |
Abd-El-Bary et al. (1986) |
M |
|
7.6 |
|
Warner et al. (1980) |
M |
|
2.0×101 |
|
Mackay et al. (2006c) |
V |
|
2.5×101 |
|
Lide and Frederikse (1995) |
V |
|
1.9×101 |
|
Mackay et al. (1995) |
V |
|
1.9×101 |
|
Shiu et al. (1994) |
V |
|
3.4 |
|
Hwang et al. (1992) |
V |
|
1.1×101 |
|
Riederer (1990) |
V |
|
9.0×101 |
|
Leuenberger et al. (1985) |
V |
418)
|
4.8 |
|
Hine and Weimar (1965) |
R |
|
2.8×101 |
6800 |
Parsons et al. (1971) |
T |
419)
|
1.3×101 |
|
Yaws (2003) |
X |
259)
|
1.9 |
3600 |
Janini and Quaddora (1986) |
X |
299)
|
1.9×101 |
7300 |
Goldstein (1982) |
X |
299)
|
2.5×101 |
|
Howard (1989) |
X |
420)
|
3.0×101 |
|
Gaffney and Senum (1984) |
X |
391)
|
3.7×101 |
|
McCarty (1980) |
X |
370)
|
2.5×101 |
|
Schüürmann (2000) |
C |
21)
|
7.6 |
|
Shiu et al. (1994) |
C |
|
7.6 |
|
Smith et al. (1993) |
C |
|
2.1×101 |
|
Ryan et al. (1988) |
C |
|
7.6 |
|
Shen (1982) |
C |
|
1.8×101 |
|
Dupeux et al. (2022) |
Q |
260)
|
6.4×101 |
|
Keshavarz et al. (2022) |
Q |
|
4.2×101 |
|
Duchowicz et al. (2020) |
Q |
185)
|
6.3×101 |
|
Wang et al. (2017) |
Q |
81)
239)
|
1.1×101 |
|
Wang et al. (2017) |
Q |
81)
240)
|
3.6×101 |
|
Wang et al. (2017) |
Q |
81)
241)
|
2.5×101 |
|
Li et al. (2014) |
Q |
242)
|
9.9 |
|
Raventos-Duran et al. (2010) |
Q |
243)
244)
|
7.8 |
|
Raventos-Duran et al. (2010) |
Q |
245)
|
1.6×101 |
|
Raventos-Duran et al. (2010) |
Q |
246)
|
4.4 |
|
Hilal et al. (2008) |
Q |
|
1.8×101 |
|
Modarresi et al. (2007) |
Q |
68)
|
|
6200 |
Kühne et al. (2005) |
Q |
|
3.0×101 |
|
Yaffe et al. (2003) |
Q |
249)
250)
|
2.9×101 |
|
English and Carroll (2001) |
Q |
231)
232)
|
6.9 |
|
Katritzky et al. (1998) |
Q |
|
2.0×101 |
|
Russell et al. (1992) |
Q |
280)
|
2.0×101 |
|
Suzuki et al. (1992) |
Q |
233)
|
9.9 |
|
Nirmalakhandan and Speece (1988) |
Q |
|
3.0×101 |
|
Duchowicz et al. (2020) |
? |
21)
186)
|
|
5400 |
Kühne et al. (2005) |
? |
|
1.3×101 |
|
Yaws (1999) |
? |
21)
|
1.6×101 |
|
Abraham et al. (1990) |
? |
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Abd-El-Bary, M. F., Hamoda, M. F., Tanisho, S., & Wakao, N.: Henry’s constants for phenol over its diluted aqueous solution, J. Chem. Eng. Data, 31, 229–230, doi:10.1021/JE00044A027 (1986).
-
Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
-
Altschuh, J., Brüggemann, R., Santl, H., Eichinger, G., & Piringer, O. G.: Henry’s law constants for a diverse set of organic chemicals: Experimental determination and comparison of estimation methods, Chemosphere, 39, 1871–1887, doi:10.1016/S0045-6535(99)00082-X (1999).
-
Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
-
Dohnal, V. & Fenclová, D.: Air–water partitioning and aqueous solubility of phenols, J. Chem. Eng. Data, 40, 478–483, doi:10.1021/JE00018A027 (1995).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
-
English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
-
Feigenbrugel, V., Le Calvé, S., Mirabel, P., & Louis, F.: Henry’s law constant measurements for phenol, o-, m-, and p-cresol as a function of temperature, Atmos. Environ., 38, 5577–5588, doi:10.1016/J.ATMOSENV.2004.06.025 (2004b).
-
Gaffney, J. S. & Senum, G. I.: Peroxides, peracids, aldehydes, and PANs and their links to natural and anthropogenic organic sources, in: Gas-Liquid Chemistry of Natural Waters, edited by Newman, L., pp. 5–1–5–7, NTIS TIC-4500, UC-11, BNL 51757 Brookhaven National Laboratory (1984).
-
Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry’s law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA (1982).
-
Guo, X. X. & Brimblecombe, P.: Henry’s law constants of phenol and mononitrophenols in water and aqueous sulfuric acid, Chemosphere, 68, 436–444, doi:10.1016/J.CHEMOSPHERE.2007.01.011 (2007).
-
Harrison, M. A. J., Cape, J. N., & Heal, M. R.: Experimentally determined Henry’s Law coefficients of phenol, 2-methylphenol and 2-nitrophenol in the temperature range 281-302 K, Atmos. Environ., 36, 1843–1851, doi:10.1016/S1352-2310(02)00137-1 (2002).
-
Heal, M. R., Pilling, M. J., Titcombe, P. E., & Whitaker, B. J.: Mass accommodation of aniline, phenol and toluene on aqueous droplets, Geophys. Res. Lett., 22, 3043–3046, doi:10.1029/95GL02944 (1995).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Hine, J. & Weimar, Jr., R. D.: Carbon basicity, J. Am. Chem. Soc., 87, 3387–3396, doi:10.1021/JA01093A018 (1965).
-
Howard, P. H.: Handbook of Environmental fate and exposure data for organic chemicals. Vol. I: Large production and priority pollutants, Lewis Publishers Inc. Chelsea, Michigan, ISBN 0873711513 (1989).
-
Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
-
Janini, G. M. & Quaddora, L. A.: Determination of activity coefficients of oxygenated hydrocarbons by liquid-liquid chromatography, J. Liq. Chromatogr., 9, 39–53, doi:10.1080/01483918608076621 (1986).
-
Ji, C., Day, S. E., Ortega, S. A., & Beall, G. W.: Henry’s law constants of some aromatic aldehydes and ketones measured by an internal standard method, J. Chem. Eng. Data, 53, 1093–1097, doi:10.1021/JE700612B (2008).
-
Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
-
Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Leuenberger, C., Ligocki, M. P., & Pankow, J. F.: Trace organic compounds in rain: 4. Identities, concentrations, and scavenging mechanisms for phenols in urban air and rain, Environ. Sci. Technol., 19, 1053–1058, doi:10.1021/ES00141A005 (1985).
-
Lide, D. R. & Frederikse, H. P. R.: CRC Handbook of Chemistry and Physics, 76th Edition, CRC Press, Inc., Boca Raton, FL, ISBN 0849304768 (1995).
-
Li, H., Wang, X., Yi, T., Xu, Z., & Liu, X.: Prediction of Henry’s law constants for organic compounds using multilayer feedforward neural networks based on linear salvation energy relationship, J. Chem. Pharm. Res., 6, 1557–1564 (2014).
-
Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Oxygen, Nitrogen, and Sulfur Containing Compounds, Lewis Publishers, Boca Raton, ISBN 1566700353 (1995).
-
Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Oxygen Containing Compounds, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006c).
-
McCarty, P. L.: Organics in water – an engineering challenge, J. Environ. Eng. Div., 106, 1–17 (1980).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
-
Parsons, G. H., Rochester, C. H., & Wood, C. E. C.: Effect of 4-substitution on the thermodynamics of hydration of phenol and the phenoxide anion, J. Chem. Soc. B, pp. 533–536, doi:10.1039/J29710000533 (1971).
-
Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
-
Riederer, M.: Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system: discussion of a fugacity-based model, Environ. Sci. Technol., 24, 829–837, doi:10.1021/ES00076A006 (1990).
-
Russell, C. J., Dixon, S. L., & Jurs, P. C.: Computer-assisted study of the relationship between molecular structure and Henry’s law constant, Anal. Chem., 64, 1350–1355, doi:10.1021/AC00037A009 (1992).
-
Ryan, J. A., Bell, R. M., Davidson, J. M., & O’Connor, G. A.: Plant uptake of non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323, doi:10.1016/0045-6535(88)90142-7 (1988).
-
Schüürmann, G.: Prediction of Henry’s law constant of benzene derivatives using quantum chemical continuum-solvation models, J. Comput. Chem., 21, 17–34, doi:10.1002/(SICI)1096-987X(20000115)21:1<17::AID-JCC3>3.0.CO;2-5 (2000).
-
Schwardt, A., Dahmke, A., & Köber, R.: Henry’s law constants of volatile organic compounds between 0 and 95∘C – Data compilation and complementation in context of urban temperature increases of the subsurface, Chemosphere, 272, 129 858, doi:10.1016/J.CHEMOSPHERE.2021.129858 (2021).
-
Sheikheldin, S. Y., Cardwell, T. J., Cattrall, R. W., Luque de Castro, M. D., & Kolev, S. D.: Determination of Henry’s law constants of phenols by pervaporation-flow injection analysis, Environ. Sci. Technol., 35, 178–181, doi:10.1021/ES001406E (2001).
-
Shen, T. T.: Estimation of organic compound emissions from waste lagoons, J. Air Pollut. Control Assoc., 32, 79–82, doi:10.1080/00022470.1982.10465374 (1982).
-
Shiu, W.-Y., Ma, K.-C., Varhaníčková, D., & Mackay, D.: Chlorophenols and alkylphenols: A review and correlation of environmentally relevant properties and fate in an evaluative environment, Chemosphere, 29, 1155–1224, doi:10.1016/0045-6535(94)90252-6 (1994).
-
Smith, J. R., Neuhauser, E. F., Middleton, A. C., Cunningham, J. J., Weightman, R. L., & Linz, D. G.: Treatment of organically contaminated groundwaters in municipal activated sludge systems, Water Environ. Res., 65, 804–818, doi:10.2175/WER.65.7.2 (1993).
-
Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
-
Tabai, S., Rogalski, M., Solimando, R., & Malanowski, S. K.: Activity coefficients of chlorophenols in water at infinite dilution, J. Chem. Eng. Data, 42, 1147–1150, doi:10.1021/JE960336H (1997).
-
Tremp, J., Mattrel, P., Fingler, S., & Giger, W.: Phenols and nitrophenols as tropospheric pollutants: Emissions from automobile exhausts and phase transfer in the atmosphere, Water Air Soil Pollut., 68, 113–123, doi:10.1007/BF00479396 (1993).
-
Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
-
Warner, H. P., Cohen, J. M., & Ireland, J. C.: Determination of Henry’s law constants of selected priority pollutants, Tech. rep., U.S. EPA, Municipal Environmental Research Laboratory, Wastewater Research Division, Cincinnati, Ohio, 45268, USA (1980).
-
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
1) |
A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented. |
11) |
Measured at high temperature and extrapolated to T⊖ = 298.15 K. |
12) |
Value at T = 293 K. |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
81) |
Value at T = 288 K. |
185) |
Value from the validation set for checking whether the model is satisfactory for compounds that are absent from the training set. |
186) |
Experimental value, extracted from HENRYWIN. |
231) |
English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown. |
232) |
Value from the training dataset. |
233) |
Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details. |
239) |
Calculated using linear free energy relationships (LFERs). |
240) |
Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC). |
241) |
Calculated using COSMOtherm. |
242) |
Temperature is not specified. |
243) |
Value from the training dataset. |
244) |
Calculated using the GROMHE model. |
245) |
Calculated using the SPARC approach. |
246) |
Calculated using the HENRYWIN method. |
249) |
Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here. |
250) |
Value from the training set. |
259) |
Value given here as quoted by Dupeux et al. (2022). |
260) |
Calculated using the COSMO-RS method. |
280) |
Value from the training set. |
299) |
Value given here as quoted by Staudinger and Roberts (1996). |
370) |
Value given here as quoted by Petrasek et al. (1983). |
375) |
Value at T = 283 K. |
391) |
Value given here as quoted by Gaffney et al. (1987). |
418) |
Value at T = 281 K. |
419) |
It is assumed here that the thermodynamic data refer to the units [mol dm−3] and [atm] as standard states. |
420) |
Value given here as quoted by Shiu et al. (1994). |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|