When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | C5H10O3 |
TRIVIAL NAME:
|
IEPOX
|
InChIKey: | FLVAIUDBQNOKHB-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
5.0×104 |
|
Wang et al. (2017) |
Q |
81)
239)
|
1.3×105 |
|
Wang et al. (2017) |
Q |
81)
240)
|
3.2×104 |
|
Wang et al. (2017) |
Q |
81)
241)
|
2.7×104 |
|
Pye et al. (2013) |
Q |
494)
|
|
|
Chan et al. (2010) |
Q |
543)
|
1.3×106 |
|
Eddingsaas et al. (2010) |
Q |
544)
|
1.9×105 |
|
Vasilakos et al. (2021) |
E |
545)
|
3.0×105 |
|
Woo and McNeill (2015) |
? |
468)
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Chan, M. N., Surratt, J. D., Claeys, M., Edgerton, E. S., Tanner, R. L., Shaw, S. L., Zheng, M., Knipping, E. M., Eddingsaas, N. C., Wennberg, P. O., & Seinfeld, J. H.: Characterization and quantification of isoprene-derived epoxydiols in ambient aerosol in the southeastern United States, Environ. Sci. Technol., 44, 4590–4596, doi:10.1021/ES100596B (2010).
-
Eddingsaas, N. C., VanderVelde, D. G., & Wennberg, P. O.: Kinetics and products of the acid-catalyzed ring-opening of atmospherically relevant butyl epoxy alcohols, J. Phys. Chem. A, 114, 8106–8113, doi:10.1021/JP103907C (2010).
-
Pye, H. O. T., Pinder, R. W., Piletic, I. R., Xie, Y., Capps, S. L., Lin, Y.-H., Surratt, J. D., Zhang, Z., Gold, A., Luecken, D. J., Hutzell, W. T., Jaoui, M., Offenberg, J. H., Kleindienst, T. E., Lewandowski, M., & Edney, E. O.: Epoxide pathways improve model predictions of isoprene markers and reveal key role of acidity in aerosol formation, Environ. Sci. Technol., 47, 11 056–11 064, doi:10.1021/ES402106H (2013).
-
Vasilakos, P., Hu, Y., Russell, A., & Nenes, A.: Determining the role of acidity, fate and formation of IEPOX-derived SOA in CMAQ, Atmos., 12, 707, doi:10.3390/ATMOS12060707 (2021).
-
Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
-
Woo, J. L. & McNeill, V. F.: simpleGAMMA v1.0 – a reduced model of secondary organic aerosol formation in the aqueous aerosol phase (aaSOA), Geosci. Model Dev., 8, 1821–1829, doi:10.5194/GMD-8-1821-2015 (2015).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
81) |
Value at T = 288 K. |
239) |
Calculated using linear free energy relationships (LFERs). |
240) |
Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC). |
241) |
Calculated using COSMOtherm. |
468) |
Woo and McNeill (2015) say that the Henry's law constant was updated based on advances in the literature since McNeill et al. (2012) but do not provide further details. |
494) |
Calculated using HENRYWIN 3.2 (bond contribution method). |
543) |
Chan et al. (2010) give a range of 1.9×105 mol m−3 Pa−1 < Hscp < 9.5×106 mol m−3 Pa−1. |
544) |
Calculated using the HENRYWIN program and calibration to 1,3-propanediol. |
545) |
The value was chosen for a model study because it gave the best agreement with measurements. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|