When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | C6H14O |
TRIVIAL NAME:
|
tert-amyl methyl ether
|
CAS RN: | 994-05-8 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | HVZJRWJGKQPSFL-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
9.7×10−3 |
6600 |
Brockbank (2013) |
L |
1)
|
5.3×10−2 |
9400 |
Hwang et al. (2010) |
M |
11)
521)
|
1.0×10−2 |
7000 |
Haimi et al. (2006) |
M |
525)
|
8.6×10−3 |
6500 |
Arp and Schmidt (2004) |
M |
|
5.2×10−3 |
|
Miller and Stuart (2000) |
M |
73)
|
1.0×10−2 |
|
Dohnal and Hovorka (1999) |
M |
|
7.0×10−3 |
|
Park et al. (1997) |
M |
|
8.1×10−3 |
|
Park et al. (1997) |
V |
|
4.2×10−3 |
|
Yaws (2003) |
X |
238)
|
3.9×10−3 |
|
Yaws (2003) |
X |
238)
|
4.7×10−2 |
|
Keshavarz et al. (2022) |
Q |
|
3.6×10−3 |
|
Duchowicz et al. (2020) |
Q |
300)
|
1.3×10−2 |
|
Gharagheizi et al. (2012) |
Q |
|
3.8×10−3 |
|
Gharagheizi et al. (2010) |
Q |
247)
|
3.8×10−3 |
|
Gharagheizi et al. (2010) |
Q |
247)
|
|
6600 |
Kühne et al. (2005) |
Q |
|
7.5×10−3 |
|
Duchowicz et al. (2020) |
? |
21)
186)
|
|
6900 |
Kühne et al. (2005) |
? |
|
5.4×10−3 |
|
Yaws (1999) |
? |
21)
|
5.0×10−3 |
7600 |
Pankow et al. (1996) |
? |
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Arp, H. P. H. & Schmidt, T. C.: Air–water transfer of MTBE, its degradation products, and alternative fuel oxygenates: the role of temperature, Environ. Sci. Technol., 38, 5405–5412, doi:10.1021/ES049286O (2004).
-
Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
-
Dohnal, V. & Hovorka, Š.: Exponential saturator: a novel gas-liquid partitioning technique for measurement of large limiting activity coefficients, Ind. Eng. Chem. Res., 38, 2036–2043, doi:10.1021/IE980743H (1999).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
-
Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
-
Haimi, P., Uusi-Kyyny, P., Pokki, J.-P., Aittamaa, J., & Keskinen, K. I.: Infinite dilution activity coefficient measurements by inert gas stripping method, Fluid Phase Equilib., 243, 126–132, doi:10.1016/J.FLUID.2006.02.022 (2006).
-
Hwang, I.-C., Kwak, H.-Y., & Park, S.-J.: Determination and prediction of Kow and dimensionless Henry’s constant (H) for 6 ether compounds at several temperatures, J. Ind. Eng. Chem., 16, 629–633, doi:10.1016/J.JIEC.2010.03.003 (2010).
-
Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Miller, M. E. & Stuart, J. D.: Measurement of aqueous Henry’s law constants for oxygenates and aromatics found in gasolines by the static headspace method, Anal. Chem., 72, 622–625, doi:10.1021/AC990757C (2000).
-
Pankow, J. F., Rathbun, R. E., & Zogorski, J. S.: Calculated volatilization rates of fuel oxygenate compounds and other gasoline-related compounds from rivers and streams, Chemosphere, 33, 921–937, doi:10.1016/0045-6535(96)00227-5 (1996).
-
Park, S.-J., Han, S.-D., & Ryu, S.-A.: Measurement of air/water partition coefficient (Henry’s law constant) by using EPICS method and their relationship with vapor pressure and water solubility, J. Korean Inst. Chem. Eng., 35, 915–920 (1997).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
1) |
A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented. |
11) |
Measured at high temperature and extrapolated to T⊖ = 298.15 K. |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
73) |
Value at T = 296 K. |
186) |
Experimental value, extracted from HENRYWIN. |
238) |
Value given here as quoted by Gharagheizi et al. (2010). |
247) |
Calculated using a combination of a group contribution method and neural networks. |
300) |
Value from the test set for true external validation. |
521) |
Hwang et al. (2010) present regression parameters in their Table 6 and values extrapolated to 298.15 K in their Table 5. However, I was not able to reproduce their calculation. The data shown here are from my own regression of the measured data between 318.15 K and 333.15 K. |
525) |
The data from Haimi et al. (2006) were fitted to the three-parameter equation: Hscp= exp( 224.10069 −4205.03828/T −37.65761 ln(T)) mol m−3 Pa−1, with T in K. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|