MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Oxidized terpenoids → 2-(4-methyl-3-cyclohexen-1-yl)-2-propanol

FORMULA:C10H18O
TRIVIAL NAME: α-terpineol
CAS RN:98-55-5
STRUCTURE
(FROM NIST):
InChIKey:WUOACPNHFRMFPN-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
4.4 2200 Copolovici and Niinemets (2005) M
4.1 Copolovici and Niinemets (2005) V
6.0×10−1 4800 van Roon et al. (2005) V
4.2 Niinemets and Reichstein (2002) V
7.4×10−1 5400 Li et al. (1998) V
6.5 Dupeux et al. (2022) Q 260)
3.6 Hilal et al. (2008) Q
8.2×10−1 Modarresi et al. (2007) Q 68)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Copolovici, L. O. & Niinemets, U.: Temperature dependencies of Henry’s law constants and octanol/water partition coefficients for key plant volatile monoterpenoids, Chemosphere, 61, 1390–1400, doi:10.1016/J.CHEMOSPHERE.2005.05.003 (2005).
  • Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Li, J., Perdue, E. M., Pavlostathis, S. G., & Araujo, R.: Physicochemical properties of selected monoterpenes, Environ. Int., 24, 353–358, doi:10.1016/S0160-4120(98)00013-0 (1998).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Niinemets, U. & Reichstein, M.: A model analysis of the effects of nonspecific monoterpenoid storage in leaf tissues on emission kinetics and composition in Mediterranean sclerophyllous Quercus species, Global Biogeochem. Cycles, 16, 1110, doi:10.1029/2002GB001927 (2002).
  • van Roon, A., Parsons, J. R., Kloeze, A. M. T., & Govers, H. A. J.: Fate and transport of monoterpenes through soils. Part I. Prediction of temperature dependent soil fate model input-parameters, Chemosphere, 61, 599–609, doi:10.1016/J.CHEMOSPHERE.2005.02.081 (2005).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
260) Calculated using the COSMO-RS method.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *