MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Heterocycles with oxygen → 2-furancarboxaldehyde

FORMULA:C5H4O2
TRIVIAL NAME: furfural; 2-furanaldehyde
CAS RN:98-01-1
STRUCTURE
(FROM NIST):
InChIKey:HYBBIBNJHNGZAN-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
2.6 Duchowicz et al. (2020) V 187)
2.6 HSDB (2015) V
2.7 Mackay et al. (2006c) V
2.7 Mackay et al. (1995) V
3.0 Yaws (2003) X 259)
3.0 Yaws (2003) X 238)
9.6 Dupeux et al. (2022) Q 260)
8.4×10−1 Duchowicz et al. (2020) Q
1.7 Gharagheizi et al. (2012) Q
2.0×10−1 Raventos-Duran et al. (2010) Q 244) 272)
6.2 Raventos-Duran et al. (2010) Q 245)
7.8×10−1 Raventos-Duran et al. (2010) Q 246)
3.0 Gharagheizi et al. (2010) Q 247)
6.0 Hilal et al. (2008) Q
8.1×10−1 Modarresi et al. (2007) Q 68)
7.2×10−2 Emel’yanenko et al. (2007) Q 417)
7.2×10−2 Hertel and Sommer (2006) Q 417)
6100 Kühne et al. (2005) Q
5900 Kühne et al. (2005) ?
3.0 Yaws (1999) ? 21)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
  • Emel’yanenko, V. N., Dabrowska, A., Verevkin, S. P., Hertel, M. O., Scheuren, H., & Sommer, K.: Vapor pressures, enthalpies of vaporization, and limiting activity coefficients in water at 100C of 2-furanaldehyde, benzaldehyde, phenylethanal, and 2-phenylethanol, J. Chem. Eng. Data, 52, 468–471, doi:10.1021/JE060406C (2007).
  • Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
  • Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
  • Hertel, M. O. & Sommer, K.: Limiting separation factors and limiting activity coefficients for 2-furfural, γ-nonalactone, benzaldehyde, and linalool in water at 100C, J. Chem. Eng. Data, 51, 1283–1285, doi:10.1021/JE0600404 (2006).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • HSDB: Hazardous Substances Data Bank, TOXicology data NETwork (TOXNET), National Library of Medicine (US), URL https://www.nlm.nih.gov/toxnet/Accessing_HSDB_Content_from_PubChem.html (2015).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Oxygen, Nitrogen, and Sulfur Containing Compounds, Lewis Publishers, Boca Raton, ISBN 1566700353 (1995).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Oxygen Containing Compounds, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006c).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
187) Estimation based on the quotient between vapor pressure and water solubility, extracted from HENRYWIN.
238) Value given here as quoted by Gharagheizi et al. (2010).
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
247) Calculated using a combination of a group contribution method and neural networks.
259) Value given here as quoted by Dupeux et al. (2022).
260) Calculated using the COSMO-RS method.
272) Value from the validation dataset.
417) Value at T = 373 K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *