MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsHydrocarbons (C, H)Mononuclear aromatics → 1,2-dimethylbenzene

FORMULA:C6H4(CH3)2
TRIVIAL NAME: o-xylene
CAS RN:95-47-6
STRUCTURE
(FROM NIST):
InChIKey:CTQNGGLPUBDAKN-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
2.0×10−3 4600 Schwardt et al. (2021) L 1)
2.0×10−3 4700 Brockbank (2013) L 1)
2.4×10−3 4200 Fogg and Sangster (2003) L
2.0×10−3 4300 Staudinger and Roberts (2001) L
2.0×10−3 4400 Plyasunov and Shock (2000) L
1.9×10−3 4000 Staudinger and Roberts (1996) L
2.0×10−3 Mackay and Shiu (1981) L
1.9×10−3 Kim and Kim (2014) M
3.2×10−3 4500 Hiatt (2013) M
2.7×10−3 8500 Zhang et al. (2013) M 326)
2.2×10−3 Zhang et al. (2013) M 327)
2.0×10−3 4300 Sieg et al. (2009) M 328)
2.3×10−3 Li et al. (2008) M
1.7×10−3 2500 Falabella and Teja (2008) M 11) 340)
9.6×10−4 McIntosh and Heffron (2000) M 14)
2.1×10−3 Dohnal and Hovorka (1999) M
2.2×10−3 Welke et al. (1998) M
1.9×10−3 3400 Kondoh and Nakajima (1997) M
1.4×10−3 Turner et al. (1996) M
2.4×10−3 4500 Dewulf et al. (1995) M
2.0×10−3 5800 Robbins et al. (1993) M 350)
1.9×10−3 Li and Carr (1993) M
2.1×10−3 Li et al. (1993) M
2.7×10−3 Zhang and Pawliszyn (1993) M
1.4×10−3 3000 Kolb et al. (1992) M 278)
1.7×10−3 Anderson (1992) M 73)
2.1×10−3 5600 Bissonette et al. (1990) M
1.9×10−3 3200 Ashworth et al. (1988) M 279)
2.3×10−3 Yurteri et al. (1987) M 12)
1.9×10−3 4500 Sanemasa et al. (1982) M
1.0×10−3 Sato and Nakajima (1979a) M 14)
2.9×10−3 5400 Wasik and Tsang (1970) M
1.8×10−3 Mackay et al. (2006a) V
1.8×10−3 Shiu and Ma (2000) V
1.8×10−3 Mackay et al. (1992a) V
2.3×10−3 Eastcott et al. (1988) V
1.8×10−3 Hine and Mookerjee (1975) V
1.9×10−3 Mackay and Leinonen (1975) V
1.9×10−3 McAuliffe (1966) V 24)
2.3×10−3 Yaws (2003) X 238)
1.9×10−3 Sieg et al. (2008) C
1.3×10−3 Keshavarz et al. (2022) Q
1.6×10−3 Duchowicz et al. (2020) Q
2.3×10−3 Wang et al. (2017) Q 81) 239)
1.6×10−3 Wang et al. (2017) Q 81) 240)
3.2×10−3 Wang et al. (2017) Q 81) 241)
1.3×10−3 Gharagheizi et al. (2012) Q
9.9×10−4 Raventos-Duran et al. (2010) Q 243) 244)
1.6×10−3 Raventos-Duran et al. (2010) Q 245)
1.6×10−3 Raventos-Duran et al. (2010) Q 246)
1.9×10−3 Gharagheizi et al. (2010) Q 247)
2.0×10−3 Hilal et al. (2008) Q
1.1×10−3 Modarresi et al. (2007) Q 68)
4100 Kühne et al. (2005) Q
1.9×10−3 Yaffe et al. (2003) Q 249) 250)
1.7×10−3 English and Carroll (2001) Q 231) 275)
3.8×10−4 Katritzky et al. (1998) Q
1.0×10−3 Suzuki et al. (1992) Q 233)
1.1×10−3 Nirmalakhandan and Speece (1988) Q
1.9×10−3 Duchowicz et al. (2020) ? 21) 186)
4100 Kühne et al. (2005) ?
2.4×10−3 Yaws (1999) ? 21)
1.1×10−3 Abraham and Weathersby (1994) ? 21)
2.3×10−3 Yaws and Yang (1992) ? 21)
1.9×10−3 Abraham et al. (1990) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Anderson, M. A.: Influence of surfactants on vapor-liquid partitioning, Environ. Sci. Technol., 26, 2186–2191, doi:10.1021/ES00035A017 (1992).
  • Ashworth, R. A., Howe, G. B., Mullins, M. E., & Rogers, T. N.: Air–water partitioning coefficients of organics in dilute aqueous solutions, J. Hazard. Mater., 18, 25–36, doi:10.1016/0304-3894(88)85057-X (1988).
  • Bissonette, E. M., Westrick, J. J., & Morand, J. M.: Determination of Henry’s coefficient for volatile organic compounds in dilute aqueous systems, in: Proceedings of the Annual Conference of the American Water Works Association, Cincinnati, OH, June 17–21, pp. 1913–1922 (1990).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Dewulf, J., Drijvers, D., & van Langenhove, H.: Measurement of Henry’s law constant as function of temperature and salinity for the low temperature range, Atmos. Environ., 29, 323–331, doi:10.1016/1352-2310(94)00256-K (1995).
  • Dohnal, V. & Hovorka, Š.: Exponential saturator: a novel gas-liquid partitioning technique for measurement of large limiting activity coefficients, Ind. Eng. Chem. Res., 38, 2036–2043, doi:10.1021/IE980743H (1999).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Eastcott, L., Shiu, W. Y., & Mackay, D.: Environmentally relevant physical-chemical properties of hydrocarbons: A review of data and development of simple correlations, Oil Chem. Pollut., 4, 191–216, doi:10.1016/S0269-8579(88)80020-0 (1988).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Falabella, J. B. & Teja, A. S.: Air–water partitioning of gasoline components in the presence of sodium chloride, Energy Fuels, 22, 398–401, doi:10.1021/EF700513K (2008).
  • Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
  • Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
  • Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
  • Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kim, Y.-H. & Kim, K.-H.: Recent advances in thermal desorption-gas chromatography-mass spectrometery method to eliminate the matrix effect between air and water samples: Application to the accurate determination of Henry’s law constant, J. Chromatogr. A, 1342, 78–85, doi:10.1016/J.CHROMA.2014.03.040 (2014).
  • Kolb, B., Welter, C., & Bichler, C.: Determination of partition coefficients by automatic equilibrium headspace gas chromatography by vapor phase calibration, Chromatographia, 34, 235–240, doi:10.1007/BF02268351 (1992).
  • Kondoh, H. & Nakajima, T.: Optimization of headspace cryofocus gas chromatography/mass spectrometry for the analysis of 54 volatile organic compounds, and the measurement of their Henry’s constants, J. Environ. Chem., 7, 81–89, doi:10.5985/JEC.7.81 (1997).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Li, J. & Carr, P. W.: Measurement of water-hexadecane partition coefficients by headspace gas chromatography and calculation of limiting activity coefficients in water, Anal. Chem., 65, 1443–1450, doi:10.1021/AC00058A023 (1993).
  • Li, J., Dallas, A. J., Eikens, D. I., Carr, P. W., Bergmann, D. L., Hait, M. J., & Eckert, C. A.: Measurement of large infinite dilution activity coefficients of nonelectrolytes in water by inert gas stripping and gas chromatography, Anal. Chem., 65, 3212–3218, doi:10.1021/AC00070A008 (1993).
  • Li, J.-Q., Shen, C.-Y., Xu, G.-H., Wang, H.-M., Jiang, H.-H., Han, H.-Y., Chu, Y.-N., & Zheng, P.-C.: Dynamic measurements of Henry’s law constant of aromatic compounds using proton transfer reaction mass spectrometry, Acta Phys. Chim. Sin., 24, 705–708 (2008).
  • Mackay, D. & Leinonen, P. J.: Rate of evaporation of low-solubility contaminants from water bodies to atmosphere, Environ. Sci. Technol., 9, 1178–1180, doi:10.1021/ES60111A012 (1975).
  • Mackay, D. & Shiu, W. Y.: A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, doi:10.1063/1.555654 (1981).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. I of Monoaromatic Hydrocarbons, Chlorobenzenes, and PCBs, Lewis Publishers, Boca Raton, ISBN 0873715136 (1992a).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. I of Introduction and Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006a).
  • McAuliffe, C.: Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin, and aromatic hydrocarbons, J. Phys. Chem., 70, 1267–1275, doi:10.1021/J100876A049 (1966).
  • McIntosh, J. M. & Heffron, J. J. A.: Modelling alterations in the partition coefficient in in vitro biological systems using headspace gas chromatography, J. Chromatogr. B, 738, 207–216, doi:10.1016/S0378-4347(99)00506-X (2000).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
  • Plyasunov, A. V. & Shock, E. L.: Thermodynamic functions of hydration of hydrocarbons at 298.15K and 0.1MPa, Geochim. Cosmochim. Acta, 64, 439–468, doi:10.1016/S0016-7037(99)00330-0 (2000).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Robbins, G. A., Wang, S., & Stuart, J. D.: Using the headspace method to determine Henry’s law constants, Anal. Chem., 65, 3113–3118, doi:10.1021/AC00069A026 (1993).
  • Sanemasa, I., Araki, M., Deguchi, T., & Nagai, H.: Solubility measurements of benzene and the alkylbenzenes in water by making use of solute vapor, Bull. Chem. Soc. Jpn., 55, 1054–1062, doi:10.1246/BCSJ.55.1054 (1982).
  • Sato, A. & Nakajima, T.: Partition coefficients of some aromatic hydrocarbons and ketones in water, blood and oil, Br. J. Ind. Med., 36, 231–234, doi:10.1136/OEM.36.3.231 (1979a).
  • Schwardt, A., Dahmke, A., & Köber, R.: Henry’s law constants of volatile organic compounds between 0 and 95C – Data compilation and complementation in context of urban temperature increases of the subsurface, Chemosphere, 272, 129 858, doi:10.1016/J.CHEMOSPHERE.2021.129858 (2021).
  • Shiu, W. Y. & Ma, K.-C.: Temperature dependence of physical-chemical properties of selected chemicals of environmental interest. I. mononuclear and polynuclear aromatic hydrocarbons, J. Phys. Chem. Ref. Data, 29, 41–130, doi:10.1063/1.556055 (2000).
  • Sieg, K., Fries, E., & Püttmann, W.: Analysis of benzene, toluene, ethylbenzene, xylenes and n-aldehydes in melted snow water via solid-phase dynamic extraction combined with gas chromatography/mass spectrometry, J. Chromatogr. A, 1178, 178–186, doi:10.1016/J.CHROMA.2007.11.025 (2008).
  • Sieg, K., Starokozheva, E., Schmidt, M. U., & Püttmann, W.: Inverse temperature dependence of Henry’s law coefficients for volatile organic compounds in supercooled water, Chemosphere, 77, 8–14, doi:10.1016/J.CHEMOSPHERE.2009.06.028 (2009).
  • Staudinger, J. & Roberts, P. V.: A critical review of Henry’s law constants for environmental applications, Crit. Rev. Environ. Sci. Technol., 26, 205–297, doi:10.1080/10643389609388492 (1996).
  • Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
  • Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
  • Turner, L. H., Chiew, Y. C., Ahlert, R. C., & Kosson, D. S.: Measuring vapor-liquid equilibrium for aqueous-organic systems: Review and a new technique, AIChE J., 42, 1772–1788, doi:10.1002/AIC.690420629 (1996).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Wasik, S. P. & Tsang, W.: Gas chromatographic determination of partition coefficients of some unsaturated hydrocarbons and their deuterated isomers in aqueous silver nitrate solutions, J. Phys. Chem., 74, 2970–2976, doi:10.1021/J100709A023 (1970).
  • Welke, B., Ettlinger, K., & Riederer, M.: Sorption of volatile organic chemicals in plant surfaces, Environ. Sci. Technol., 32, 1099–1104, doi:10.1021/ES970763V (1998).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
  • Yurteri, C., Ryan, D. F., Callow, J. J., & Gurol, M. D.: The effect of chemical composition of water on Henry’s law constant, J. Water Pollut. Control Fed., 59, 950–956 (1987).
  • Zhang, Z. & Pawliszyn, J.: Headspace solid-phase microextraction, Anal. Chem., 65, 1843–1852, doi:10.1021/AC00062A008 (1993).
  • Zhang, W., Huang, L., Yang, C., & Ying, W.: Experimental method for estimating Henry’s law constant of volatile organic compound, Asian J. Chem., 25, 2647–2650, doi:10.14233/AJCHEM.2013.13584 (2013).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
11) Measured at high temperature and extrapolated to T = 298.15 K.
12) Value at T = 293 K.
14) Value at T = 310 K.
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
24) Value at "room temperature".
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
73) Value at T = 296 K.
81) Value at T = 288 K.
186) Experimental value, extracted from HENRYWIN.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
233) Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details.
238) Value given here as quoted by Gharagheizi et al. (2010).
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
243) Value from the training dataset.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
247) Calculated using a combination of a group contribution method and neural networks.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
275) Value from the test dataset.
278) Extrapolated from data measured between 40 °C and 80 °C.
279) Data are taken from the report by Howe et al. (1987).
326) Using the theoretical initial concentration (H0); see Zhang et al. (2013) for details.
327) Average of all duplicates (H1); see Zhang et al. (2013) for details.
328) Sieg et al. (2009) also provide data for supercooled water. Here, only data above 0 °C were used to calculate the temperature dependence.
340) Values for salt solutions are also available from this reference.
350) The data from Robbins et al. (1993) were fitted to the three-parameter equation: Hscp= exp( −1350.74178 +64760.28328/T +197.85937 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *