MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Miscellaneous → 1-hydroxy-2-methoxybenzene

FORMULA:C7H8O2
TRIVIAL NAME: guaiacol; 2-methoxyphenol
CAS RN:90-05-1
STRUCTURE
(FROM NIST):
InChIKey:LHGVFZTZFXWLCP-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
8.6 McFall et al. (2020) M
9.0 7900 Wieland et al. (2015) M 549)
7.7 Sagebiel et al. (1992) M
9.1 7600 Sagebiel et al. (1992) M
9.6 Mackay et al. (2006c) V
7.7 Sagebiel et al. (1992) V
4.1×101 Leuenberger et al. (1985) V 418)
5.0 Abraham et al. (1994a) R
1.1×101 Keshavarz et al. (2022) Q
5.6×10−1 Abney (2021) Q 401)
8.7 Duchowicz et al. (2020) Q 300)
8.2 McFall et al. (2020) Q 476)
5.2 Hilal et al. (2008) Q
7.7 Modarresi et al. (2007) Q 68)
6700 Kühne et al. (2005) Q
1.2×101 English and Carroll (2001) Q 231) 275)
6.4×101 Katritzky et al. (1998) Q
5.1×102 Nirmalakhandan et al. (1997) Q
8.2 Duchowicz et al. (2020) ? 21) 186)
7800 Kühne et al. (2005) ?
3.3×10−1 Yaws (1999) ? 14) 21)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abney, C. A.: Predicting Henry’s Law constants of volatile organic compounds present in bourbon using molecular simulations, Master’s thesis, University of Louisville, Kentucky, USA, doi:10.18297/etd/3440 (2021).
  • Abraham, M. H., Andonian-Haftvan, J., Whiting, G. S., Leo, A., & Taft, R. S.: Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination, J. Chem. Soc. Perkin Trans. 2, pp. 1777–1791, doi:10.1039/P29940001777 (1994a).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Leuenberger, C., Ligocki, M. P., & Pankow, J. F.: Trace organic compounds in rain: 4. Identities, concentrations, and scavenging mechanisms for phenols in urban air and rain, Environ. Sci. Technol., 19, 1053–1058, doi:10.1021/ES00141A005 (1985).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Oxygen Containing Compounds, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006c).
  • McFall, A. S., Johnson, A. W., & Anastasio, C.: Air–water partitioning of biomass-burning phenols and the effects of temperature and salinity, Environ. Sci. Technol., 54, 3823–3830, doi:10.1021/ACS.EST.9B06443 (2020).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N., Brennan, R. A., & Speece, R. E.: Predicting Henry’s law constant and the effect of temperature on Henry’s law constant, Wat. Res., 31, 1471–1481, doi:10.1016/S0043-1354(96)00395-8 (1997).
  • Sagebiel, J. C., Seiber, J. N., & Woodrow, J. E.: Comparison of headspace and gas-stripping methods for determining the Henry’s law constant (H) for organic compounds of low to intermediate H, Chemosphere, 25, 1763–1768, doi:10.1016/0045-6535(92)90017-L (1992).
  • Wieland, F., Neff, A., Gloess, A. N., Poisson, L., Atlan, S., Larrain, D., Prêtre, D., Blank, I., & Yeretzian, C.: Temperature dependence of Henry’s law constants: An automated, high-throughput gas stripping cell design coupled to PTR-ToF-MS, Int. J. Mass Spectrom., 387, 69–77, doi:10.1016/J.IJMS.2015.07.015 (2015).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

14) Value at T = 310 K.
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
186) Experimental value, extracted from HENRYWIN.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
275) Value from the test dataset.
300) Value from the test set for true external validation.
401) Calculated for an aqueous solution containing 60 % ethanol by volume as the solvent.
418) Value at T = 281 K.
476) Calculated using the experimental value adjusted (EVA) method; see McFall et al. (2020) for details.
549) The data from Wieland et al. (2015) were fitted to the three-parameter equation: Hscp= exp( −96.39127 +11107.87195/T +10.76466 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *