MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Esters (RCOOR) → dibutyl phthalate

FORMULA:C16H22O4
CAS RN:84-74-2
STRUCTURE
(FROM NIST):
InChIKey:DOIRQSBPFJWKBE-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
1.1×101 12000 Brockbank (2013) L 1) 519)
9.3 Lee et al. (2012) M
5.5 Atlas et al. (1983) M 73)
2.2×101 Mackay et al. (2006c) V
2.7×101 Saçan et al. (2005) V
7.5 Cousins and Mackay (2000) V
1.1×101 Staples et al. (1997) V
2.2×101 Lide and Frederikse (1995) V
2.0×101 Mackay et al. (1995) V
2.6×102 Hwang et al. (1992) V
7.6 Wolfe et al. (1980) V
5.6×101 Yaws (2003) X 12) 238)
1.6×10−1 McCarty (1980) X 370)
3.4×101 Ryan et al. (1988) C
5.6×101 Gharagheizi et al. (2010) Q 247)
2.9×101 Hilal et al. (2008) Q
1.1 Modarresi et al. (2007) Q 68)
14000 Kühne et al. (2005) Q
3.7×101 Saçan et al. (2005) Q
13000 Kühne et al. (2005) ?
2.7×101 Yaws (1999) ? 12) 21)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Atlas, E., Velasco, A., Sullivan, K., & Giam, C. S.: A radiotracer study of air–water exchange of synthetic organic compounds, Chemosphere, 12, 1251–1258, doi:10.1016/0045-6535(83)90130-3 (1983).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Cousins, I. & Mackay, D.: Correlating the physical-chemical properties of phthalate esters using the ‘three solubility’ approach, Chemosphere, 41, 1389–1399, doi:10.1016/S0045-6535(00)00005-9 (2000).
  • Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Lee, H., Kim, H.-J., & Kwon, J.-H.: Determination of Henry’s law constant using diffusion in air and water boundary layers, J. Chem. Eng. Data, 57, 3296–3302, doi:10.1021/JE300954S (2012).
  • Lide, D. R. & Frederikse, H. P. R.: CRC Handbook of Chemistry and Physics, 76th Edition, CRC Press, Inc., Boca Raton, FL, ISBN 0849304768 (1995).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Oxygen, Nitrogen, and Sulfur Containing Compounds, Lewis Publishers, Boca Raton, ISBN 1566700353 (1995).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Oxygen Containing Compounds, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006c).
  • McCarty, P. L.: Organics in water – an engineering challenge, J. Environ. Eng. Div., 106, 1–17 (1980).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Ryan, J. A., Bell, R. M., Davidson, J. M., & O’Connor, G. A.: Plant uptake of non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323, doi:10.1016/0045-6535(88)90142-7 (1988).
  • Saçan, M. T., Özkul, M., & Erdem, S. S.: Physico-chemical properties of PCDD/PCDFs and phthalate esters, SAR QSAR Environ. Res., 16, 443–459, doi:10.1080/10659360500320602 (2005).
  • Staples, C. A., Peterson, D. R., Parkerton, T. F., & Adams, W. J.: The environmental fate of phthalate esters: A literature review, Chemosphere, 35, 667–749, doi:10.1016/S0045-6535(97)00195-1 (1997).
  • Wolfe, N. L., Burns, L. A., & Steen, W. C.: Use of linear free energy relationships and an evaluative model to assess the fate and transport of phthalate esters in the aquatic environment, Chemosphere, 9, 393–402, doi:10.1016/0045-6535(80)90022-3 (1980).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
12) Value at T = 293 K.
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
73) Value at T = 296 K.
238) Value given here as quoted by Gharagheizi et al. (2010).
247) Calculated using a combination of a group contribution method and neural networks.
370) Value given here as quoted by Petrasek et al. (1983).
519) Values at 298 K in Tables C2 and C5 of Brockbank (2013) are inconsistent, with 9 % difference.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *