MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with chlorine (Cl)Chlorocarbons (C, H, Cl) → 1,2-dichloropropane

FORMULA:C3H6Cl2
CAS RN:78-87-5
STRUCTURE
(FROM NIST):
InChIKey:KNKRKFALVUDBJE-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
3.7×10−3 4100 Schwardt et al. (2021) L 1)
3.4×10−3 4300 Burkholder et al. (2019) L
3.4×10−3 4300 Burkholder et al. (2015) L
3.4×10−3 4000 Brockbank (2013) L 1)
3.4×10−3 4300 Staudinger and Roberts (2001) L
3.4×10−3 4300 Staudinger and Roberts (1996) L
4.3×10−3 4400 Hiatt (2013) M
4.2×10−3 Bobadilla et al. (2003) M
3.5×10−3 4300 Dewulf et al. (1999) M
4.4×10−3 Dohnal and Hovorka (1999) M 12)
5.5×10−3 Welke et al. (1998) M
4.6×10−3 Hovorka and Dohnal (1997) M 12)
4.3×10−3 3700 Kondoh and Nakajima (1997) M
3.6×10−3 4200 Wright et al. (1992) M 679)
3.8×10−3 3800 Tse et al. (1992) M
3.0×10−3 3800 Bissonette et al. (1990) M
3.8×10−3 4700 Ashworth et al. (1988) M 33) 279)
4.9×10−3 Albanese et al. (1987) M
3.4×10−3 4300 Leighton and Calo (1981) M
3.5×10−3 Warner et al. (1980) M
2.1×10−3 Sato and Nakajima (1979b) M 14)
3.7×10−3 Mackay et al. (2006b) V
3.7×10−3 Mackay et al. (1993) V
3.6×10−3 Warner et al. (1980) V
3.4×10−3 Hine and Mookerjee (1975) V
3.5×10−3 Yaws (2003) X 238)
3.4×10−3 2100 Goldstein (1982) X 299)
3.5×10−3 Horvath and Getzen (1999) C
3.4×10−3 Ryan et al. (1988) C
3.5×10−3 Shen (1982) C
1.6×10−2 Keshavarz et al. (2022) Q
1.8×10−3 Duchowicz et al. (2020) Q 185)
1.4×10−3 Wang et al. (2017) Q 81) 239)
6.2×10−3 Wang et al. (2017) Q 81) 240)
8.9×10−3 Wang et al. (2017) Q 81) 241)
4.7×10−3 Gharagheizi et al. (2012) Q
3.9×10−3 Raventos-Duran et al. (2010) Q 243) 244)
4.9×10−3 Raventos-Duran et al. (2010) Q 245)
6.2×10−4 Raventos-Duran et al. (2010) Q 246)
4.1×10−3 Gharagheizi et al. (2010) Q 247)
5.4×10−3 Hilal et al. (2008) Q
3.6×10−3 Modarresi et al. (2007) Q 68)
3700 Kühne et al. (2005) Q
3.8×10−3 Yaffe et al. (2003) Q 249) 250)
2.1×10−3 English and Carroll (2001) Q 231) 232)
2.8×10−3 Katritzky et al. (1998) Q
1.2×10−3 Nirmalakhandan and Speece (1988) Q
3.5×10−3 Duchowicz et al. (2020) ? 21) 186)
8.5×10−4 MacBean (2012a) ?
3.5×10−3 Mackay et al. (2006b) ?
4000 Kühne et al. (2005) ?
3.5×10−3 Yaws (1999) ? 21)
2.2×10−3 Abraham and Weathersby (1994) ? 21)
3.5×10−3 Mackay et al. (1993) ?
3.7×10−3 Yaws and Yang (1992) ? 21)
3.4×10−3 Abraham et al. (1990) ?
4.8×10−3 Mackay and Yeun (1983) ?
5.9×10−3 Chiou et al. (1980) ? 80)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Albanese, V., Milano, J. C., & Vernet, J. L.: Etude de l’evaporation de quelques hydrocarbures halogenenes de faible masse moleculaire dissous a l’etat de traces dans l’eau, Environ. Technol. Lett., 8, 657–668, doi:10.1080/09593338709384529 (1987).
  • Ashworth, R. A., Howe, G. B., Mullins, M. E., & Rogers, T. N.: Air–water partitioning coefficients of organics in dilute aqueous solutions, J. Hazard. Mater., 18, 25–36, doi:10.1016/0304-3894(88)85057-X (1988).
  • Bissonette, E. M., Westrick, J. J., & Morand, J. M.: Determination of Henry’s coefficient for volatile organic compounds in dilute aqueous systems, in: Proceedings of the Annual Conference of the American Water Works Association, Cincinnati, OH, June 17–21, pp. 1913–1922 (1990).
  • Bobadilla, R., Huybrechts, T., Dewulf, J., & van Langenhove, H.: Determination of the Henry’s constant of volatile and semi-volatile organic componuds of environmental concern by the bas (batch air stripping) technique: a new mathematical approach, J. Chilean Chem. Soc., 48, doi:10.4067/S0717-97072003000300001 (2003).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Chiou, C. T., Freed, V. H., Peters, L. J., & Kohnert, R. L.: Evaporation of solutes from water, Environ. Int., 3, 231–236, doi:10.1016/0160-4120(80)90123-3 (1980).
  • Dewulf, J., van Langenhove, H., & Everaert, P.: Determination of Henry’s law coefficients by combination of the equilibrium partitioning in closed systems and solid-phase microextraction techniques, J. Chromatogr. A, 830, 353–363, doi:10.1016/S0021-9673(98)00877-2 (1999).
  • Dohnal, V. & Hovorka, Š.: Exponential saturator: a novel gas-liquid partitioning technique for measurement of large limiting activity coefficients, Ind. Eng. Chem. Res., 38, 2036–2043, doi:10.1021/IE980743H (1999).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
  • Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
  • Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry’s law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA (1982).
  • Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
  • Horvath, A. L. & Getzen, F. W.: IUPAC-NIST Solubility Data Series 68. Halogenated Aliphatic Hydrocarbon Compounds C3-C14, J. Phys. Chem. Ref. Data, 28, 649–777, doi:10.1063/1.556051 (1999).
  • Hovorka, Š. & Dohnal, V.: Determination of air–water partitioning of volatile halogenated hydrocarbons by the inert gas stripping method, J. Chem. Eng. Data, 42, 924–933, doi:10.1021/JE970046G (1997).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kondoh, H. & Nakajima, T.: Optimization of headspace cryofocus gas chromatography/mass spectrometry for the analysis of 54 volatile organic compounds, and the measurement of their Henry’s constants, J. Environ. Chem., 7, 81–89, doi:10.5985/JEC.7.81 (1997).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Leighton, D. T. & Calo, J. M.: Distribution coefficients of chlorinated hydrocarbons in dilute air–water systems for groundwater contamination applications, J. Chem. Eng. Data, 26, 382–385, doi:10.1021/JE00026A010 (1981).
  • MacBean, C.: The Pesticide Manual, 16th Edition, Supplementary Entries – Extended, Tech. rep., British Crop Production Council, ISBN 190139686X (2012a).
  • Mackay, D. & Yeun, A. T. K.: Mass transfer coefficient correlations for volatilization of organic solutes from water, Environ. Sci. Technol., 17, 211–217, doi:10.1021/ES00110A006 (1983).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton, ISBN 0873719735 (1993).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. II of Halogenated Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006b).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Ryan, J. A., Bell, R. M., Davidson, J. M., & O’Connor, G. A.: Plant uptake of non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323, doi:10.1016/0045-6535(88)90142-7 (1988).
  • Sato, A. & Nakajima, T.: A structure-activity relationship of some chlorinated hydrocarbons, Arch. Environ. Health, 34, 69–75, doi:10.1080/00039896.1979.10667371 (1979b).
  • Schwardt, A., Dahmke, A., & Köber, R.: Henry’s law constants of volatile organic compounds between 0 and 95C – Data compilation and complementation in context of urban temperature increases of the subsurface, Chemosphere, 272, 129 858, doi:10.1016/J.CHEMOSPHERE.2021.129858 (2021).
  • Shen, T. T.: Estimation of organic compound emissions from waste lagoons, J. Air Pollut. Control Assoc., 32, 79–82, doi:10.1080/00022470.1982.10465374 (1982).
  • Staudinger, J. & Roberts, P. V.: A critical review of Henry’s law constants for environmental applications, Crit. Rev. Environ. Sci. Technol., 26, 205–297, doi:10.1080/10643389609388492 (1996).
  • Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
  • Tse, G., Orbey, H., & Sandler, S. I.: Infinite dilution activity coefficients and Henry’s law coefficients of some priority water pollutants determined by a relative gas chromatographic method, Environ. Sci. Technol., 26, 2017–2022, doi:10.1021/ES00034A021 (1992).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Warner, H. P., Cohen, J. M., & Ireland, J. C.: Determination of Henry’s law constants of selected priority pollutants, Tech. rep., U.S. EPA, Municipal Environmental Research Laboratory, Wastewater Research Division, Cincinnati, Ohio, 45268, USA (1980).
  • Welke, B., Ettlinger, K., & Riederer, M.: Sorption of volatile organic chemicals in plant surfaces, Environ. Sci. Technol., 32, 1099–1104, doi:10.1021/ES970763V (1998).
  • Wright, D. A., Sandler, S. I., & DeVoll, D.: Infinite dilution activity coefficients and solubilities of halogenated hydrocarbons in water at ambient temperatures, Environ. Sci. Technol., 26, 1828–1831, doi:10.1021/ES00033A018 (1992).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
12) Value at T = 293 K.
14) Value at T = 310 K.
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
33) Fitting the temperature dependence dlnH/d(1/T) produced a low correlation coefficient (r2 < 0.9). The data should be treated with caution.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
80) Value at T = 297 K.
81) Value at T = 288 K.
185) Value from the validation set for checking whether the model is satisfactory for compounds that are absent from the training set.
186) Experimental value, extracted from HENRYWIN.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
232) Value from the training dataset.
238) Value given here as quoted by Gharagheizi et al. (2010).
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
243) Value from the training dataset.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
247) Calculated using a combination of a group contribution method and neural networks.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
279) Data are taken from the report by Howe et al. (1987).
299) Value given here as quoted by Staudinger and Roberts (1996).
679) The data from Wright et al. (1992) were fitted to the three-parameter equation: Hscp= exp( −573.71583 +28877.33987/T +82.70652 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *