MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsInorganic speciesChlorine (Cl) → chlorine (molecular)

FORMULA:Cl2
CAS RN:7782-50-5
STRUCTURE
(FROM NIST):
InChIKey:KZBUYRJDOAKODT-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
Burkholder et al. (2019) L 111)
Burkholder et al. (2015) L 111)
Sander et al. (2011) L 111)
Sander et al. (2006) L 111)
Young (1983) L 112)
6.1×10−4 3200 Aieta and Roberts (1986) M
6.2×10−4 3500 Whitney and Vivian (1941a) M 113)
Jones (1911) M 111)
Winkler (1907) M 111)
6.0×10−4 3000 Yakovkin (1900) M 114)
Bakhuis Roozeboom (1884) M 111)
Goodwin (1883) M 111)
Schoenfeld (1855) M 111)
7.4×10−4 2600 Lin and Pehkonen (1998) R
5.9×10−4 Leaist (1986) R 115)
3200 Brian et al. (1962) R
Adams and Edmonds (1937) R 116)
Arkadiev (1918) R 117)
6.1×10−4 2800 Wagman et al. (1982) T
8.7×10−4 Hayer et al. (2022) Q 20)
Bartlett and Margerum (1999) ? 21) 111) 118)
Yaws et al. (1999) ? 111)
Dean and Lange (1999) ? 111)
Wilhelm et al. (1977) ? 111) 119)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Adams, F. W. & Edmonds, R. G.: Absorption of chlorine by water in a packed tower, Ind. Eng. Chem., 29, 447–451, doi:10.1021/IE50328A021 (1937).
  • Aieta, E. M. & Roberts, P. V.: Henry constant of molecular chlorine in aqueous solution, J. Chem. Eng. Data, 31, 51–53, doi:10.1021/JE00043A017 (1986).
  • Arkadiev, V.: Solubility of chlorine in water, J. Russ. Phys. Chem. Soc., 50, 205–209, (in Russian) (1918).
  • Bakhuis Roozeboom, H. W.: Sur l’hydrate de chlore, Recl. Trav. Chim. Pays-Bas, 3, 59–72, doi:10.1002/RECL.18840030203 (1884).
  • Bartlett, W. P. & Margerum, D. W.: Temperature dependencies of the Henry’s law constant and the aqueous phase dissociation constant of bromine chloride, Environ. Sci. Technol., 33, 3410–3414, doi:10.1021/ES990300K (1999).
  • Brian, P. L. T., Vivian, J. E., & Habib, A. G.: The effect of the hydrolysis reaction upon the rate of absorption of chlorine into water, AIChE J., 8, 205–209, doi:10.1002/AIC.690080215 (1962).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Dean, J. A. & Lange, N. A.: Lange’s Handbook of Chemistry, Fifteenth Edition, McGraw-Hill, Inc., ISBN 9780070163843 (1999).
  • Goodwin, W. L.: XXVI.—On the nature of solution. Part I.—On the solubility of chlorine in water, and in aqueous solutions of soluble chlorides, Earth Environ. Sci. Trans. R. Soc. Edinburgh, 30, 597–618, doi:10.1017/S0080456800025096 (1883).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Jones, W. J.: XLIX.—The determination of solubility coefficients by aspiration, J. Chem. Soc. Trans., 99, 392–404, doi:10.1039/CT9119900392 (1911).
  • Leaist, D. G.: Absorption of chlorine into water, J. Solution Chem., 15, 827–838, doi:10.1007/BF00646090 (1986).
  • Lin, C.-J. & Pehkonen, S. O.: Oxidation of elemental mercury by aqueous chlorine (HOCl/OCl): Implications for tropospheric mercury chemistry, J. Geophys. Res., 103, 28 093–28 102, doi:10.1029/98JD02304 (1998).
  • Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
  • Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
  • Schoenfeld, F.: Ueber den Absorptionscoëfficienten der schwefligen Säure, des Chlors und des Schwefelwasserstoffs, Liebigs Ann. Chem., 95, 1–23, doi:10.1002/JLAC.18550950102 (1855).
  • Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., & Nuttall, R. L.: The NBS tables of chemical thermodynamic properties; Selected values for inorganic and C1 and C2 organic substances in SI units, J. Phys. Chem. Ref. Data, 11, suppl. 2, URL https://srd.nist.gov/JPCRD/jpcrdS2Vol11.pdf (1982).
  • Whitney, R. P. & Vivian, J. E.: Solubility of chlorine in water, Ind. Eng. Chem., 33, 741–744, doi:10.1021/IE50378A014 (1941a).
  • Wilhelm, E., Battino, R., & Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, doi:10.1021/CR60306A003 (1977).
  • Winkler, L.: A gázok oldhatósága vzben (Solubility of gases in water), Math. Termész. Értesitö, 25, 86–108 (1907).
  • Yakovkin, A. A.: About the hydrolysis of chlorine, J. Russ. Phys. Chem. Soc., 32, 673–721, (in Russian) (1900).
  • Yaws, C. L., Hopper, J. R., Wang, X., Rathinsamy, A. K., & Pike, R. W.: Calculating solubility & Henry’s law constants for gases in water, Chem. Eng., pp. 102–105 (1999).
  • Young, C. L.: IUPAC Solubility Data Series, Volume 12, Sulfur Dioxide, Chlorine, Fluorine and Chlorine Oxides, Pergamon Press, Oxford, doi:10.1016/C2013-0-03419-6 (1983).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
111) The value presented here appears to be the total solubility of chlorine (i.e., the sum of Cl2 and HOCl) at a partial pressure of p(Cl2)  = 101325 Pa. This is different from Henry's law constant, which is defined at extrapolation to infinite dilution.
112) Young (1983) recommends values calculated from Table 1 of Adams and Edmonds (1937). Thus, the data refer to effective values that take into account the hydrolysis in the aqueous phase:
Hs,eff = ([Cl2]+[HOCl])/p(Cl2).
In addition, the values apply to a partial pressure of p(Cl2)  = 101325 Pa, and not to infinite dilution.
113) The same experimental data were also published by Whitney and Vivian (1941b).
114) The data from Yakovkin (1900) were fitted to the three-parameter equation: Hscp= exp( −122.31264 +7690.40834/T +15.63947 ln(T)) mol m−3 Pa−1, with T in K.
115) Leaist (1986) converted the total solubility of chlorine in pure water from Adams and Edmonds (1937) to an intrinsic Henry's law constant.
116) Adams and Edmonds (1937) re-analyzed the data from Yakovkin (1900) and Arkadiev (1918), considering deviations from the perfect gas law. They calculated the total solubility of chlorine (i.e., the sum of Cl2 and HOCl) at several partial pressures of Cl2. This is different from Henry's law constant, which is defined at extrapolation to infinite dilution.
117) Arkadiev (1918) re-analyzed the measurements of Yakovkin (1900). In addition to the data between 15 °C and 83.4 °C, he also analyzed the experimental results at 0 °C and obtained a dimensionless Henry solubility of Hscc = 4.115 at that temperature.
118) The value of ∆H° listed in Table 2 of Bartlett and Margerum (1999) is incorrect. The correct value can be found in the text on page 3411.
119) Wilhelm et al. (1977) present a fitting function for Cl2 based on four papers which are cited in the footnotes of Table I. However, Bunsen (1855b) and Bunsen (1855c) do not contain any data for Cl2, and the data from Whitney and Vivian (1941a) and Whitney and Vivian (1941b) are inconsistent with the fitting function.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *