MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsInorganic speciesOxygen (O) → oxygen

FORMULA:O2
CAS RN:7782-44-7
STRUCTURE
(FROM NIST):
InChIKey:MYMOFIZGZYHOMD-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
1.3×10−5 1500 Burkholder et al. (2019) L 1)
1.3×10−5 1500 Burkholder et al. (2015) L 1)
Clever et al. (2014) L 2)
1.2×10−5 1700 Warneck and Williams (2012) L
1.3×10−5 1500 Sander et al. (2011) L 1)
1.3×10−5 1500 Sander et al. (2006) L 1)
1.3×10−5 1400 Fernández-Prini et al. (2003) L 3)
1.3×10−5 1500 Battino et al. (1983) L
1.3×10−5 1500 Battino (1981) L 1)
1.3×10−5 1500 Wilhelm et al. (1977) L
1.2×10−5 1400 Himmelblau (1960) L 1)
1.2×10−5 1600 Millero et al. (2002a) M 4) 5)
1.2×10−5 1600 Millero et al. (2002b) M 6) 7)
1.3×10−5 1500 Rettich et al. (2000) M 8)
1.3×10−5 1400 Sherwood et al. (1991) M 9)
1.3×10−5 1500 Rettich et al. (1981) M 10)
1.3×10−5 1500 Cosgrove and Walkley (1981) M 11)
1.2×10−5 da Silva et al. (1980) M 12)
1.3×10−5 1400 Cramer (1980) M
1.3×10−5 1400 Benson et al. (1979) M
1.4×10−4 Razumovskii and Zaikov (1971) M 13)
1.1×10−5 Power and Stegall (1970) M 14)
1.3×10−5 1500 Murray and Riley (1969) M 15)
1.2×10−5 1200 Shoor et al. (1969) M 16)
1.2×10−5 1600 Carpenter (1966) M 17)
1.3×10−5 1500 Morrison and Billett (1952) M 18)
1.2×10−5 Orcutt and Seevers (1937a) M
1.3×10−5 1500 Fox (1909) M
1.2×10−5 1700 Geffcken (1904) M
1.3×10−5 1400 Winkler (1891b) M 19)
1.3×10−5 1400 Bohr and Bock (1891) M
1.2×10−5 1800 Timofejew (1890) M
1.2×10−5 1200 Bunsen (1855a) M
1.2×10−5 1600 Wauchope and Haque (1972) V
1.2×10−5 1600 Wauchope and Haque (1972) V
1.3×10−5 1500 Wauchope and Haque (1972) V
1.3×10−5 Pierotti (1965) T
1.4×10−5 Nunn (1958) C 12)
7.9×10−6 Hayer et al. (2022) Q 20)
1.3×10−5 1500 Yaws et al. (1999) ? 21)
1.1×10−5 Abraham and Weathersby (1994) ? 21)
1.2×10−5 1500 Dean and Lange (1999) ? 22) 23)
1.3×10−5 Seinfeld (1986) ? 21)
1.3×10−4 Smith and Bomberger (1980) ? 24)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
  • Battino, R.: IUPAC Solubility Data Series, Volume 7, Oxygen and Ozone, Pergamon Press, Oxford, doi:10.1016/C2013-0-03145-3 (1981).
  • Battino, R., Rettich, T. R., & Tominaga, T.: The solubility of oxygen and ozone in liquids, J. Phys. Chem. Ref. Data, 12, 163–178, doi:10.1063/1.555680 (1983).
  • Benson, B. B., Krause, Jr., D., & Peterson, M. A.: The solubility and isotopic fractionation of gases in dilute aqueous solution. I. oxygen, J. Solution Chem., 8, 655–690, doi:10.1007/BF01033696 (1979).
  • Bohr, C. & Bock, J.: Bestimmung der Absorption einiger Gase in Wasser bei den Temperaturen zwischen 0 und 100, Ann. Phys., 280, 318–343, doi:10.1002/ANDP.18912801010 (1891).
  • Bunsen, R.: Ueber das Gesetz der Gasabsorption, Liebigs Ann. Chem., 93, 1–50, doi:10.1002/JLAC.18550930102 (1855a).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Carpenter, J. H.: New measurements of oxygen solubility in pure and natural water, Limnol. Oceanogr., 11, 264–277, doi:10.4319/LO.1966.11.2.0264 (1966).
  • Clever, H. L., Battino, R., Miyamoto, H., Yampolski, Y., & Young, C. L.: IUPAC-NIST solubility data series. 103. Oxygen and ozone in water, aqueous solutions, and organic liquids (supplement to solubility data series volume 7), J. Phys. Chem. Ref. Data, 43, 033 102, doi:10.1063/1.4883876 (2014).
  • Cosgrove, B. A. & Walkley, J.: Solubilities of gases in H2O and 2H2O, J. Chromatogr., 216, 161–167, doi:10.1016/S0021-9673(00)82344-4 (1981).
  • Cramer, S. D.: The solubility of oxygen in brines from 0 to 300C, Ind. Eng. Chem. Process Des. Dev., 19, 300–305, doi:10.1021/I260074A018 (1980).
  • da Silva, A. M., Formosinho, S. J., & Martins, C. T.: Gas chromatographic determination of the solubility of gases in liquids at low pressures, J. Chromatogr. Sci., 18, 180–182, doi:10.1093/CHROMSCI/18.4.180 (1980).
  • Dean, J. A. & Lange, N. A.: Lange’s Handbook of Chemistry, Fifteenth Edition, McGraw-Hill, Inc., ISBN 9780070163843 (1999).
  • Fernández-Prini, R., Alvarez, J. L., & Harvey, A. H.: Henry’s constants and vapor-liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures, J. Phys. Chem. Ref. Data, 32, 903–916, doi:10.1063/1.1564818 (2003).
  • Fox, C. J. J.: On the coefficients of absorption of nitrogen and oxygen in distilled water and sea-water, and of atmospheric carbonic acid in sea-water, Trans. Faraday Soc., 5, 68–86, doi:10.1039/TF9090500068 (1909).
  • Geffcken, G.: Beiträge zur Kenntnis der Löslichkeitsbeeinflussung, Z. Phys. Chem., 49, 257–302, doi:10.1515/ZPCH-1904-4925 (1904).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Himmelblau, D. M.: Solubilities of inert gases in water. 0C. to near the critical point of water, J. Chem. Eng. Data, 5, 10–15, doi:10.1021/JE60005A003 (1960).
  • Millero, F. J., Huang, F., & Laferiere, A. L.: Solubility of oxygen in the major sea salts as a function of concentration and temperature, Mar. Chem., 78, 217–230, doi:10.1016/S0304-4203(02)00034-8 (2002a).
  • Millero, F. J., Huang, F., & Laferiere, A. L.: The solubility of oxygen in the major sea salts and their mixtures at 25C, Geochim. Cosmochim. Acta, 66, 2349–2359, doi:10.1016/S0016-7037(02)00838-4 (2002b).
  • Morrison, T. J. & Billett, F.: 730. The salting-out of non-electrolytes. Part II. The effect of variation in non-electrolyte, J. Chem. Soc., pp. 3819–3822, doi:10.1039/JR9520003819 (1952).
  • Murray, C. N. & Riley, J. P.: The solubility of gases in distilled water and sea water — II. Oxygen, Deep-Sea Res. Oceanogr. Abstr., 16, 311–320, doi:10.1016/0011-7471(69)90021-7 (1969).
  • Nunn, J. F.: Respiratory measurements in the presence of nitrous oxide: storage of gas samples and chemical methods of analysis, Br. J. Anaesth., 30, 254–263, doi:10.1093/BJA/30.6.254 (1958).
  • Orcutt, F. S. & Seevers, M. H.: A method for determining the solubility of gases in pure liquids or solutions by the Van Slyke-Neill manometric apparatus, J. Biol. Chem., 117, 501–507, doi:10.1016/S0021-9258(18)74550-X (1937a).
  • Pierotti, R. A.: Aqueous solutions of nonpolar gases, J. Phys. Chem., 69, 281–288, doi:10.1021/J100885A043 (1965).
  • Power, G. G. & Stegall, H.: Solubility of gases in human red blood cell ghosts, J. Appl. Physiol., 29, 145–149, doi:10.1152/JAPPL.1970.29.2.145 (1970).
  • Razumovskii, S. D. & Zaikov, G. E.: The solubility of ozone in various solvents, Russ. Chem. Bull., 20, 616–620, doi:10.1007/BF00853885 (1971).
  • Rettich, T. R., Handa, Y. P., Battino, R., & Wilhelm, E.: Solubility of gases in liquids. 13. High-precision determination of Henry’s constants for methane and ethane in liquid water at 275 to 328 K, J. Phys. Chem., 85, 3230–3237, doi:10.1021/J150622A006 (1981).
  • Rettich, T. R., Battino, R., & Wilhelm, E.: Solubility of gases in liquids. 22. High-precision determination of Henry’s law constants of oxygen in liquid water from T = 274K to T = 328K, J. Chem. Thermodyn., 32, 1145–1156, doi:10.1006/JCHT.1999.0581 (2000).
  • Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
  • Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
  • Seinfeld, J. H.: Atmospheric Chemistry and Physics of Air Pollution, Wiley-Interscience Publication, NY, ISBN 0471828572 (1986).
  • Sherwood, J. E., Stagnitti, F., Kokkinn, M. J., & Williams, W. D.: Dissolved oxygen concentrations in hypersaline waters, Limnol. Oceanogr., 36, 235–250, doi:10.4319/LO.1991.36.2.0235 (1991).
  • Shoor, S. K., Walker, Jr., R. D., & Gubbins, K. E.: Salting out of nonpolar gases in aqueous potassium hydroxide solutions, J. Phys. Chem., 73, 312–317, doi:10.1021/J100722A006 (1969).
  • Smith, J. H. & Bomberger, D. C.: Prediction of volatilization rate of chemicals in water, in: Hydrocarbons and Halogenated Hydrocarbons in the Aquatic Environment, edited by Afghan, B. K., Mackay, D., Braun, H. E., Chau, A. S. Y., Lawrence, J., Lean, D. R. S., Meresz, O., Miles, J. R. W., Pierce, R. C., Rees, G. A. V., White, R. E., Whittle, D. M., & Williams, D. T., pp. 445–451, Plenum Press New York (1980).
  • Timofejew, W.: Über die Absorption von Wasserstoff und Sauerstoff in Wasser und Alkohol, Z. Phys. Chem., 6, 141–152, doi:10.1515/ZPCH-1890-0614 (1890).
  • Warneck, P. & Williams, J.: The Atmospheric Chemist’s Companion: Numerical Data for Use in the Atmospheric Sciences, Springer Verlag, doi:10.1007/978-94-007-2275-0 (2012).
  • Wauchope, R. D. & Haque, R.: Aqueous solutions of nonpolar compounds. Heat-capacity effects, Can. J. Chem., 50, 133–138, doi:10.1139/V72-022 (1972).
  • Wilhelm, E., Battino, R., & Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, doi:10.1021/CR60306A003 (1977).
  • Winkler, L. W.: Die Löslichkeit der Gase in Wasser (zweite Abhandlung), Ber. Dtsch. Chem. Ges., 24, 3602–3610, doi:10.1002/CBER.189102402237 (1891b).
  • Yaws, C. L., Hopper, J. R., Wang, X., Rathinsamy, A. K., & Pike, R. W.: Calculating solubility & Henry’s law constants for gases in water, Chem. Eng., pp. 102–105 (1999).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
2) Clever et al. (2014) recommend the data from Rettich et al. (2000).
3) The vapor pressure for water from Wagner and Pruss (1993) was used to calculate Hs.
4) The data from Millero et al. (2002a) were fitted to the three-parameter equation: Hscp= exp( −130.91491 +6700.12242/T +17.04684 ln(T)) mol m−3 Pa−1, with T in K.
5) Almost the same data were also published in Millero et al. (2002b).
6) The data from Millero et al. (2002b) were fitted to the three-parameter equation: Hscp= exp( −118.73105 +6163.97787/T +15.22401 ln(T)) mol m−3 Pa−1, with T in K.
7) Almost the same data were also published in Millero et al. (2002a).
8) The data from Rettich et al. (2000) were fitted to the three-parameter equation: Hscp= exp( −179.13831 +8707.17767/T +24.33473 ln(T)) mol m−3 Pa−1, with T in K.
9) The data from Sherwood et al. (1991) were fitted to the three-parameter equation: Hscp= exp( −197.67462 +9515.09306/T +27.11204 ln(T)) mol m−3 Pa−1, with T in K.
10) The data from Rettich et al. (1981) were fitted to the three-parameter equation: Hscp= exp( −178.21340 +8672.23354/T +24.19307 ln(T)) mol m−3 Pa−1, with T in K.
11) Measured at high temperature and extrapolated to T = 298.15 K.
12) Value at T = 293 K.
13) Value at T = 273 K.
14) Value at T = 310 K.
15) The data from Murray and Riley (1969) were fitted to the three-parameter equation: Hscp= exp( −180.22078 +8760.50130/T +24.49289 ln(T)) mol m−3 Pa−1, with T in K.
16) The data from Shoor et al. (1969) were fitted to the three-parameter equation: Hscp= exp( −91.44799 +4548.67245/T +11.38821 ln(T)) mol m−3 Pa−1, with T in K.
17) The data from Carpenter (1966) were fitted to the three-parameter equation: Hscp= exp( −130.04464 +6687.45227/T +16.90114 ln(T)) mol m−3 Pa−1, with T in K.
18) The data from Morrison and Billett (1952) were fitted to the three-parameter equation: Hscp= exp( −167.89288 +8254.02144/T +22.62741 ln(T)) mol m−3 Pa−1, with T in K.
19) The data from Winkler (1891b) were fitted to the three-parameter equation: Hscp= exp( −155.30315 +7638.78869/T +20.77945 ln(T)) mol m−3 Pa−1, with T in K.
20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
22) The data from Dean and Lange (1999) were fitted to the three-parameter equation: Hscp= exp( −161.84252 +7966.66767/T +21.73409 ln(T)) mol m−3 Pa−1, with T in K.
23) The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by Buck (1981). The quantities A and α from Dean and Lange (1999) were assumed to be identical.
24) Value at "room temperature".

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *