MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with fluorine (F)Organic fluorine → hexafluoroethane

FORMULA:C2F6
CAS RN:76-16-4
STRUCTURE
(FROM NIST):
InChIKey:WMIYKQLTONQJES-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
6.5×10−7 2100 Bonifácio et al. (2001) M
5.3×10−7 Park et al. (1982) M
5.6×10−7 2300 Wen and Muccitelli (1979) M 620)
5.8×10−7 Yaws (2003) X 238)
7.1×10−7 Hayer et al. (2022) Q 20)
9.3×10−7 Keshavarz et al. (2022) Q
2.2×10−5 Duchowicz et al. (2020) Q
5.8×10−7 2600 Li et al. (2019) Q 1)
1.5×10−5 Gharagheizi et al. (2012) Q
4.1×10−7 Zhang et al. (2010) Q 288) 289)
1.1×10−5 Zhang et al. (2010) Q 288) 290)
8.4×10−7 Zhang et al. (2010) Q 288) 291)
1.9×10−6 Zhang et al. (2010) Q 288) 292)
8.1×10−7 Gharagheizi et al. (2010) Q 247)
1.2×10−5 Hilal et al. (2008) Q
1.8×10−6 Modarresi et al. (2007) Q 68)
2600 Kühne et al. (2005) Q
1.2×10−6 1700 Bonifácio et al. (2001) Q
4.9×10−7 Duchowicz et al. (2020) ? 21) 186)
2900 Kühne et al. (2005) ?
5.8×10−7 Yaws (1999) ? 21)
5.8×10−7 Yaws and Yang (1992) ? 21)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Bonifácio, R. P., Pádua, A. A. H., & Costa Gomes, M. F.: Perfluoroalkanes in water: experimental Henry’s law coefficients for hexafluoroethane and computer simulations for tetrafluoromethane and hexafluoroethane, J. Phys. Chem. B, 105, 8403–8409, doi:10.1021/JP010597K (2001).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
  • Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Li, P., Mühle, J., Montzka, S. A., Oram, D. E., Miller, B. R., Weiss, R. F., Fraser, P. J., & Tanhua, T.: Atmospheric histories, growth rates and solubilities in seawater and other natural waters of the potential transient tracers HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116, Ocean Sci., 15, 33–60, doi:10.5194/OS-15-33-2019 (2019).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Park, T., Rettich, T. R., Battino, R., Peterson, D., & Wilhelm, E.: Solubility of gases in liquids. 14. Bunsen coefficients for several fluorine-containing gases (Freons) dissolved in water at 298.15K, J. Chem. Eng. Data, 27, 324–326, doi:10.1021/JE00029A027 (1982).
  • Wen, W.-Y. & Muccitelli, J. A.: Thermodynamics of some perfluorocarbon gases in water, J. Solution Chem., 8, 225–246, doi:10.1007/BF00648882 (1979).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
  • Zhang, X., Brown, T. N., Wania, F., Heimstad, E. S., & Goss, K.-U.: Assessment of chemical screening outcomes based on different partitioning property estimation methods, Environ. Int., 36, 514–520, doi:10.1016/J.ENVINT.2010.03.010 (2010).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
186) Experimental value, extracted from HENRYWIN.
238) Value given here as quoted by Gharagheizi et al. (2010).
247) Calculated using a combination of a group contribution method and neural networks.
288) Data taken from the supplement.
289) Calculated using the EPI Suite (v4.0) method.
290) Calculated using the SPARC (v4.2) method.
291) Calculated using the COSMOtherm (v2.1) method.
292) Calculated using the ABSOLV (ADMEBoxes v4.1) method.
620) The data from Wen and Muccitelli (1979) were fitted to the three-parameter equation: Hscp= exp( −499.57565 +23563.38593/T +71.28478 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *