When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | CF4 |
TRIVIAL NAME:
|
carbontetrafluoride
|
CAS RN: | 75-73-0 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | TXEYQDLBPFQVAA-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
2.1×10−6 |
1800 |
Burkholder et al. (2019) |
L |
1)
|
1.7×10−6 |
2300 |
Burkholder et al. (2019) |
L |
71)
|
2.1×10−6 |
1800 |
Burkholder et al. (2015) |
L |
1)
|
1.7×10−6 |
2300 |
Burkholder et al. (2015) |
L |
71)
|
2.1×10−6 |
2300 |
Warneck and Williams (2012) |
L |
|
2.1×10−6 |
1800 |
Sander et al. (2011) |
L |
1)
|
2.1×10−6 |
1800 |
Wilhelm et al. (1977) |
L |
|
2.0×10−6 |
2000 |
Reichl (1995) |
M |
604)
|
2.1×10−6 |
1800 |
Scharlin and Battino (1995) |
M |
605)
|
2.1×10−6 |
1800 |
Scharlin and Battino (1994) |
M |
606)
|
2.1×10−6 |
|
Park et al. (1982) |
M |
|
2.1×10−6 |
1600 |
Cosgrove and Walkley (1981) |
M |
11)
|
2.0×10−6 |
1900 |
Wen and Muccitelli (1979) |
M |
607)
|
2.1×10−6 |
1800 |
Ashton et al. (1968) |
M |
608)
|
2.0×10−6 |
1500 |
Morrison and Johnstone (1954) |
M |
609)
|
1.9×10−6 |
|
Hine and Mookerjee (1975) |
V |
|
3.3×10−6 |
|
Pierotti (1965) |
T |
|
1.8×10−6 |
|
Yaws (2003) |
X |
238)
|
1.9×10−6 |
|
Irmann (1965) |
C |
|
2.8×10−6 |
|
Hayer et al. (2022) |
Q |
20)
|
6.9×10−7 |
|
Keshavarz et al. (2022) |
Q |
|
1.4×10−5 |
|
Duchowicz et al. (2020) |
Q |
|
2.1×10−6 |
1800 |
Li et al. (2019) |
Q |
1)
|
5.5×10−6 |
|
Gharagheizi et al. (2012) |
Q |
|
2.1×10−6 |
|
Gharagheizi et al. (2010) |
Q |
247)
|
9.2×10−6 |
|
Hilal et al. (2008) |
Q |
|
3.2×10−6 |
|
Modarresi et al. (2007) |
Q |
68)
|
|
2200 |
Kühne et al. (2005) |
Q |
|
2.9×10−6 |
|
Goss (2005) |
Q |
|
2.0×10−6 |
|
Yaffe et al. (2003) |
Q |
249)
250)
|
1.0×10−6 |
-840 |
Bonifácio et al. (2001) |
Q |
|
1.2×10−8 |
|
Katritzky et al. (1998) |
Q |
|
5.4×10−6 |
|
Nirmalakhandan and Speece (1988) |
Q |
|
1.6×10−6 |
|
Irmann (1965) |
Q |
|
1.9×10−6 |
|
Duchowicz et al. (2020) |
? |
21)
186)
|
|
1900 |
Kühne et al. (2005) |
? |
|
1.9×10−6 |
|
Yaws (1999) |
? |
21)
|
2.1×10−6 |
1700 |
Yaws et al. (1999) |
? |
21)
|
1.8×10−6 |
|
Yaws and Yang (1992) |
? |
21)
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Ashton, J. T., Dawe, R. A., Miller, K. W., Smith, E. B., & Stickings, B. J.: The solubility of certain gaseous fluorine compounds in water, J. Chem. Soc. A, pp. 1793–1796, doi:10.1039/J19680001793 (1968).
-
Bonifácio, R. P., Pádua, A. A. H., & Costa Gomes, M. F.: Perfluoroalkanes in water: experimental Henry’s law coefficients for hexafluoroethane and computer simulations for tetrafluoromethane and hexafluoroethane, J. Phys. Chem. B, 105, 8403–8409, doi:10.1021/JP010597K (2001).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
-
Cosgrove, B. A. & Walkley, J.: Solubilities of gases in H2O and 2H2O, J. Chromatogr., 216, 161–167, doi:10.1016/S0021-9673(00)82344-4 (1981).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
-
Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
-
Goss, K.-U.: Predicting the equilibrium partitioning of organic compounds using just one linear solvation energy relationship (LSER), Fluid Phase Equilib., 233, 19–22, doi:10.1016/J.FLUID.2005.04.006 (2005).
-
Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
-
Irmann, F.: Eine einfache Korrelation zwischen Wasserlöslichkeit und Struktur von Kohlenwasserstoffen und Halogenkohlenwasserstoffen, Chem.-Ing.-Tech., 37, 789–798, doi:10.1002/CITE.330370802 (1965).
-
Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
-
Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Li, P., Mühle, J., Montzka, S. A., Oram, D. E., Miller, B. R., Weiss, R. F., Fraser, P. J., & Tanhua, T.: Atmospheric histories, growth rates and solubilities in seawater and other natural waters of the potential transient tracers HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116, Ocean Sci., 15, 33–60, doi:10.5194/OS-15-33-2019 (2019).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Morrison, T. J. & Johnstone, N. B.: Solubilities of the inert gases in water, J. Chem. Soc., pp. 3441–3446, doi:10.1039/JR9540003441 (1954).
-
Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
-
Park, T., Rettich, T. R., Battino, R., Peterson, D., & Wilhelm, E.: Solubility of gases in liquids. 14. Bunsen coefficients for several fluorine-containing gases (Freons) dissolved in water at 298.15K, J. Chem. Eng. Data, 27, 324–326, doi:10.1021/JE00029A027 (1982).
-
Pierotti, R. A.: Aqueous solutions of nonpolar gases, J. Phys. Chem., 69, 281–288, doi:10.1021/J100885A043 (1965).
-
Reichl, A.: Messung und Korrelierung von Gaslöslichkeiten halogenierter Kohlenwasserstoffe, Ph.D. thesis, Technische Universität Berlin, Germany (1995).
-
Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
-
Scharlin, P. & Battino, R.: Solubility of CCl2F2, CClF3, CF4 and c-C4F8 in H2O and D2O at 288 to 318 K and 101.325kPa. Thermodynamics of transfer of gases from H2O to D2O, Fluid Phase Equilib., 95, 137–147, doi:10.1016/0378-3812(94)80066-9 (1994).
-
Scharlin, P. & Battino, R.: Solubility of CCl2F2, CClF3, CF4, and CH4 in water and seawater at 288.15-303.15K and 101.325kPa, J. Chem. Eng. Data, 40, 167–169, doi:10.1021/JE00017A036 (1995).
-
Warneck, P. & Williams, J.: The Atmospheric Chemist’s Companion: Numerical Data for Use in the Atmospheric Sciences, Springer Verlag, doi:10.1007/978-94-007-2275-0 (2012).
-
Wen, W.-Y. & Muccitelli, J. A.: Thermodynamics of some perfluorocarbon gases in water, J. Solution Chem., 8, 225–246, doi:10.1007/BF00648882 (1979).
-
Wilhelm, E., Battino, R., & Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, doi:10.1021/CR60306A003 (1977).
-
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
-
Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
-
Yaws, C. L., Hopper, J. R., Wang, X., Rathinsamy, A. K., & Pike, R. W.: Calculating solubility & Henry’s law constants for gases in water, Chem. Eng., pp. 102–105 (1999).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
1) |
A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented. |
11) |
Measured at high temperature and extrapolated to T⊖ = 298.15 K. |
20) |
Calculated using machine learning matrix completion methods (MCMs). |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
71) |
Solubility in sea water. |
186) |
Experimental value, extracted from HENRYWIN. |
238) |
Value given here as quoted by Gharagheizi et al. (2010). |
247) |
Calculated using a combination of a group contribution method and neural networks. |
249) |
Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here. |
250) |
Value from the training set. |
604) |
The data from Reichl (1995) were fitted to the three-parameter equation: Hscp= exp( −350.64777 +16708.21486/T +49.40261 ln(T)) mol m−3 Pa−1, with T in K. |
605) |
The data from Scharlin and Battino (1995) were fitted to the three-parameter equation: Hscp= exp( −552.21779 +25529.81258/T +79.59510 ln(T)) mol m−3 Pa−1, with T in K. |
606) |
The data from Scharlin and Battino (1994) were fitted to the three-parameter equation: Hscp= exp( −552.21779 +25529.81258/T +79.59510 ln(T)) mol m−3 Pa−1, with T in K. |
607) |
The data from Wen and Muccitelli (1979) were fitted to the three-parameter equation: Hscp= exp( −356.93310 +16943.80173/T +50.37092 ln(T)) mol m−3 Pa−1, with T in K. |
608) |
The data from Ashton et al. (1968) were fitted to the three-parameter equation: Hscp= exp( −320.94892 +15261.58540/T +45.04995 ln(T)) mol m−3 Pa−1, with T in K. |
609) |
The data from Morrison and Johnstone (1954) were fitted to the three-parameter equation: Hscp= exp( −174.44927 +8434.85415/T +23.34667 ln(T)) mol m−3 Pa−1, with T in K. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|