MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with chlorine (Cl)Chlorofluorocarbons (C, H, O, N, F, Cl) → 1-chloro-1,1-difluoroethane

FORMULA:CH3CF2Cl
TRIVIAL NAME: R142b
CAS RN:75-68-3
STRUCTURE
(FROM NIST):
InChIKey:BHNZEZWIUMJCGF-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
1.5×10−4 2600 Kutsuna (2013) M
1.4×10−4 3200 Maaßen (1995) M 770)
1.4×10−4 3200 Reichl (1995) M 771)
1.5×10−4 3000 Chang and Criddle (1995) M 772)
1.4×10−4 2500 McLinden (1989) V
1.9×10−4 Irmann (1965) C 295)
1.6×10−4 Hayer et al. (2022) Q 20)
1.4×10−4 3200 Li et al. (2019) Q 1)
1.5×10−4 Modarresi et al. (2007) Q 68)
8.4×10−5 Yaffe et al. (2003) Q 249) 250)
1.5×10−3 Katritzky et al. (1998) Q
1.5×10−4 Irmann (1965) Q

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Chang, W.-K. & Criddle, C. S.: Biotransformation of HCFC-22, HCFC-142b, HCFC-123, and HFC-134a by methanotrophic mixed culture MM1, Biodegrad., 6, 1–9, doi:10.1007/BF00702293 (1995).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Irmann, F.: Eine einfache Korrelation zwischen Wasserlöslichkeit und Struktur von Kohlenwasserstoffen und Halogenkohlenwasserstoffen, Chem.-Ing.-Tech., 37, 789–798, doi:10.1002/CITE.330370802 (1965).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Kutsuna, S.: Determination of rate constants for aqueous reactions of HCFC-123 and HCFC-225ca with OH along with Henry’s law constants of several HCFCs, Int. J. Chem. Kinet., 45, 440–451, doi:10.1002/KIN.20780 (2013).
  • Li, P., Mühle, J., Montzka, S. A., Oram, D. E., Miller, B. R., Weiss, R. F., Fraser, P. J., & Tanhua, T.: Atmospheric histories, growth rates and solubilities in seawater and other natural waters of the potential transient tracers HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116, Ocean Sci., 15, 33–60, doi:10.5194/OS-15-33-2019 (2019).
  • Maaßen, S.: Experimentelle Bestimmung und Korrelierung von Verteilungskoeffizienten in verdünnten Lösungen, Ph.D. thesis, Technische Universität Berlin, Germany, ISBN 3826511042 (1995).
  • McLinden, M. O.: Physical properties of alternatives to the fully halogenated chlorofluorocarbons, in: WMO Report 20, Scientific Assessment of Stratospheric Ozone: 1989, Volume II, pp. 11–38, World Meteorol. Organ., Geneva, ISBN 9280712551 (1989).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Reichl, A.: Messung und Korrelierung von Gaslöslichkeiten halogenierter Kohlenwasserstoffe, Ph.D. thesis, Technische Universität Berlin, Germany (1995).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
20) Calculated using machine learning matrix completion methods (MCMs).
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
295) Value at T = 294 K.
770) The data from Maaßen (1995) were fitted to the three-parameter equation: Hscp= exp( −270.78344 +14413.03953/T +37.48366 ln(T)) mol m−3 Pa−1, with T in K.
771) The data from Reichl (1995) were fitted to the three-parameter equation: Hscp= exp( −184.96240 +10541.13831/T +24.70437 ln(T)) mol m−3 Pa−1, with T in K.
772) The data from Chang and Criddle (1995) were fitted to the three-parameter equation: Hscp= exp( −190.58060 +10602.65774/T +25.66197 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *