MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with bromine (Br)Bromine, chlorine and fluorine (C, H, N, O, F, Cl, Br) → bromodichloromethane

FORMULA:CHCl2Br
CAS RN:75-27-4
STRUCTURE
(FROM NIST):
InChIKey:FMWLUWPQPKEARP-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
4.0×10−3 5200 Burkholder et al. (2019) L
3.9×10−3 4900 Burkholder et al. (2019) L 71)
4.0×10−3 5200 Burkholder et al. (2015) L
3.9×10−3 4900 Burkholder et al. (2015) L 71)
4.0×10−3 5200 Sander et al. (2011) L
4.0×10−3 5200 Sander et al. (2006) L
4.8×10−3 3700 Fogg and Sangster (2003) L
4.0×10−3 5200 Staudinger and Roberts (2001) L
4.0×10−3 5200 Staudinger and Roberts (1996) L
5.2×10−3 4700 Hiatt (2013) M
5.8×10−3 Ruiz-Bevia and Fernandez-Torres (2010) M
2.9×10−3 Zhang et al. (2002) M 14)
5.4×10−3 4400 Kondoh and Nakajima (1997) M
3.9×10−3 4800 Moore et al. (1995) M 71) 794)
4.8×10−3 4200 Tse et al. (1992) M
4.7×10−3 5200 Nicholson et al. (1984) M
3.5×10−3 5200 Ervin et al. (1980) M
4.7×10−3 Warner et al. (1980) M
4.1×10−3 Mackay et al. (2006b) V
4.1×10−3 Mackay et al. (1993) V
4.6×10−3 1200 Goldstein (1982) X 299)
7.7×10−3 Hilal et al. (2008) C
4.3×10−3 Nicholson et al. (1984) C
4.7×10−3 Nicholson et al. (1984) C 12)
4.7×10−3 Shen (1982) C
8.8×10−3 Keshavarz et al. (2022) Q
9.4×10−3 Duchowicz et al. (2020) Q 185)
3.1×10−3 Raventos-Duran et al. (2010) Q 244) 272)
3.9×10−3 Raventos-Duran et al. (2010) Q 245)
9.9×10−3 Raventos-Duran et al. (2010) Q 246)
3.9×10−3 Hilal et al. (2008) Q
2.4×10−3 Modarresi et al. (2007) Q 68)
4100 Kühne et al. (2005) Q
4.8×10−3 Yaffe et al. (2003) Q 249) 250)
3.2×10−3 Katritzky et al. (1998) Q
4.7×10−3 Duchowicz et al. (2020) ? 21) 186)
6.2×10−3 Mackay et al. (2006b) ?
3800 Kühne et al. (2005) ?
6.2×10−3 Mackay et al. (1993) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Ervin, A. L., Mangone, M. A., & Singley, J. E.: Trace organics removal by air stripping, in: Proceedings of the Annual Conference of the American Water Works Association, pp. 507–530 (1980).
  • Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
  • Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry’s law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA (1982).
  • Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kondoh, H. & Nakajima, T.: Optimization of headspace cryofocus gas chromatography/mass spectrometry for the analysis of 54 volatile organic compounds, and the measurement of their Henry’s constants, J. Environ. Chem., 7, 81–89, doi:10.5985/JEC.7.81 (1997).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton, ISBN 0873719735 (1993).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. II of Halogenated Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006b).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Moore, R. M., Geen, C. E., & Tait, V. K.: Determination of Henry’s law constants for a suite of naturally occuring halogenated methanes in seawater, Chemosphere, 30, 1183–1191, doi:10.1016/0045-6535(95)00009-W (1995).
  • Nicholson, B. C., Maguire, B. P., & Bursill, D. B.: Henry’s law constants for the trihalomethanes: Effects of water composition and temperature, Environ. Sci. Technol., 18, 518–521, doi:10.1021/ES00125A006 (1984).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Ruiz-Bevia, F. & Fernandez-Torres, M. J.: Determining the Henry’s law constants of THMs in seawater by means of purge-and-trap gas chromatography (PT-GC): The influence of seawater as sample matrix, Anal. Sci., 26, 723–726, doi:10.2116/ANALSCI.26.723 (2010).
  • Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
  • Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
  • Shen, T. T.: Estimation of organic compound emissions from waste lagoons, J. Air Pollut. Control Assoc., 32, 79–82, doi:10.1080/00022470.1982.10465374 (1982).
  • Staudinger, J. & Roberts, P. V.: A critical review of Henry’s law constants for environmental applications, Crit. Rev. Environ. Sci. Technol., 26, 205–297, doi:10.1080/10643389609388492 (1996).
  • Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
  • Tse, G., Orbey, H., & Sandler, S. I.: Infinite dilution activity coefficients and Henry’s law coefficients of some priority water pollutants determined by a relative gas chromatographic method, Environ. Sci. Technol., 26, 2017–2022, doi:10.1021/ES00034A021 (1992).
  • Warner, H. P., Cohen, J. M., & Ireland, J. C.: Determination of Henry’s law constants of selected priority pollutants, Tech. rep., U.S. EPA, Municipal Environmental Research Laboratory, Wastewater Research Division, Cincinnati, Ohio, 45268, USA (1980).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Zhang, S. B. L., Wang, S., & Franzblau, A.: Partition coefficients for the trihalomethanes among blood, urine, water, milk and air, Sci. Total Environ., 284, 237–247, doi:10.1016/S0048-9697(01)00890-7 (2002).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

12) Value at T = 293 K.
14) Value at T = 310 K.
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
71) Solubility in sea water.
185) Value from the validation set for checking whether the model is satisfactory for compounds that are absent from the training set.
186) Experimental value, extracted from HENRYWIN.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
272) Value from the validation dataset.
299) Value given here as quoted by Staudinger and Roberts (1996).
794) The data from Moore et al. (1995) were fitted to the three-parameter equation: Hscp= exp( −76.31131 +7250.73360/T +8.15388 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *