When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | CH3CN |
TRIVIAL NAME:
|
acetonitrile
|
CAS RN: | 75-05-8 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | WEVYAHXRMPXWCK-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
5.2×10−1 |
4000 |
Burkholder et al. (2019) |
L |
|
5.2×10−1 |
4000 |
Burkholder et al. (2015) |
L |
|
4.9×10−1 |
4300 |
Brockbank (2013) |
L |
1)
|
5.2×10−1 |
4000 |
Sander et al. (2011) |
L |
|
5.2×10−1 |
4000 |
Sander et al. (2006) |
L |
|
3.8×10−1 |
4200 |
Plyasunov et al. (2006) |
L |
|
5.0×10−1 |
4100 |
Fogg and Sangster (2003) |
L |
|
5.1×10−1 |
4000 |
Staudinger and Roberts (2001) |
L |
|
4.7×10−1 |
3500 |
Arijs and Brasseur (1986) |
L |
|
6.0×10−1 |
6300 |
Hiatt (2013) |
M |
|
5.2×10−1 |
4000 |
Ji and Evans (2007) |
M |
|
4.9×10−1 |
|
Bebahani et al. (2002) |
M |
|
3.2×10−1 |
3300 |
Hovorka et al. (2002) |
M |
11)
|
3.4×10−1 |
|
Welke et al. (1998) |
M |
|
5.3×10−1 |
4100 |
Benkelberg et al. (1995) |
M |
|
4.6×10−1 |
|
Li and Carr (1993) |
M |
|
8.2×10−2 |
|
Yu (1992) |
M |
12)
|
4.8×10−1 |
3900 |
Snider and Dawson (1985) |
M |
|
5.3×10−1 |
4100 |
Hamm et al. (1984) |
M |
|
3.7×10−2 |
|
Abraham and Acree (2007) |
V |
|
5.0×10−1 |
|
Hwang et al. (1992) |
V |
|
2.9×10−1 |
|
Hine and Weimar (1965) |
R |
|
2.9×10−1 |
|
Gaffney and Senum (1984) |
X |
391)
|
4.7×10−1 |
|
Hayer et al. (2022) |
Q |
20)
|
3.4×10−1 |
|
Keshavarz et al. (2022) |
Q |
|
1.0×10−1 |
|
Duchowicz et al. (2020) |
Q |
|
2.9×10−1 |
|
Li et al. (2014) |
Q |
242)
|
7.7×10−1 |
|
Hilal et al. (2008) |
Q |
|
3.7×10−1 |
|
Modarresi et al. (2007) |
Q |
68)
|
|
4200 |
Kühne et al. (2005) |
Q |
|
2.9×10−1 |
|
Yaffe et al. (2003) |
Q |
249)
250)
|
2.9×10−1 |
|
English and Carroll (2001) |
Q |
231)
232)
|
4.4 |
|
Katritzky et al. (1998) |
Q |
|
2.9×10−2 |
|
Nirmalakhandan et al. (1997) |
Q |
|
3.1×10−1 |
|
Suzuki et al. (1992) |
Q |
233)
|
2.9×10−1 |
|
Duchowicz et al. (2020) |
? |
21)
186)
|
3.6×10−1 |
|
Mackay et al. (2006d) |
? |
|
|
4300 |
Kühne et al. (2005) |
? |
|
4.9×10−1 |
|
Yaws (1999) |
? |
21)
|
4.9×10−1 |
|
Yaws and Yang (1992) |
? |
21)
|
2.9×10−1 |
|
Abraham et al. (1990) |
? |
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Abraham, M. H. & Acree, Jr., W. E.: Prediction of gas to water partition coefficients from 273 to 373 K using predicted enthalpies and heat capacities of hydration, Fluid Phase Equilib., 262, 97–110, doi:10.1016/J.FLUID.2007.08.011 (2007).
-
Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
-
Arijs, E. & Brasseur, G.: Acetonitrile in the stratosphere and implications for positive ion composition, J. Geophys. Res., 91, 4003–4016, doi:10.1029/JD091ID03P04003 (1986).
-
Bebahani, G. R. R., Hogan, P., & Waghorne, W. E.: Ostwald concentration coefficients of acetonitrile in aqueous mixed solvents: a new, rapid method for measuring the solubilities of volatile solutes, J. Chem. Eng. Data, 47, 1290–1292, doi:10.1021/JE0200665 (2002).
-
Benkelberg, H.-J., Hamm, S., & Warneck, P.: Henry’s law coefficients for aqueous solutions of acetone, acetaldehyde and acetonitrile, and equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite, J. Atmos. Chem., 20, 17–34, doi:10.1007/BF01099916 (1995).
-
Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
-
Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
-
Gaffney, J. S. & Senum, G. I.: Peroxides, peracids, aldehydes, and PANs and their links to natural and anthropogenic organic sources, in: Gas-Liquid Chemistry of Natural Waters, edited by Newman, L., pp. 5–1–5–7, NTIS TIC-4500, UC-11, BNL 51757 Brookhaven National Laboratory (1984).
-
Hamm, S., Hahn, J., Helas, G., & Warneck, P.: Acetonitrile in the troposphere: residence time due to rainout and uptake by the ocean, Geophys. Res. Lett., 11, 1207–1210, doi:10.1029/GL011I012P01207 (1984).
-
Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
-
Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Hine, J. & Weimar, Jr., R. D.: Carbon basicity, J. Am. Chem. Soc., 87, 3387–3396, doi:10.1021/JA01093A018 (1965).
-
Hovorka, Š., Dohnal, V., Roux, A. H., & Roux-Desgranges, G.: Determination of temperature dependence of limiting activity coefficients for a group of moderately hydrophobic organic solutes in water, Fluid Phase Equilib., 201, 135–164, doi:10.1016/S0378-3812(02)00087-0 (2002).
-
Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
-
Ji, C. & Evans, E. M.: Using an internal standard method to determine Henry’s law constants, Environ. Toxicol. Chem., 26, 231–236, doi:10.1897/06-339R.1 (2007).
-
Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
-
Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Li, J. & Carr, P. W.: Measurement of water-hexadecane partition coefficients by headspace gas chromatography and calculation of limiting activity coefficients in water, Anal. Chem., 65, 1443–1450, doi:10.1021/AC00058A023 (1993).
-
Li, H., Wang, X., Yi, T., Xu, Z., & Liu, X.: Prediction of Henry’s law constants for organic compounds using multilayer feedforward neural networks based on linear salvation energy relationship, J. Chem. Pharm. Res., 6, 1557–1564 (2014).
-
Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Nitrogen and Sulfur Containing Compounds and Pesticides, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006d).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Nirmalakhandan, N., Brennan, R. A., & Speece, R. E.: Predicting Henry’s law constant and the effect of temperature on Henry’s law constant, Wat. Res., 31, 1471–1481, doi:10.1016/S0043-1354(96)00395-8 (1997).
-
Plyasunov, A. V., Plyasunova, N. V., & Shock, E. L.: Group contribution values for the thermodynamic functions of hydration at 298.15 K, 0.1 MPa. 4. aliphatic nitriles and dinitriles, J. Chem. Eng. Data, 51, 1481–1490, doi:10.1021/JE060129+ (2006).
-
Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
-
Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
-
Snider, J. R. & Dawson, G. A.: Tropospheric light alcohols, carbonyls, and acetonitrile: Concentrations in the southwestern United States and Henry’s law data, J. Geophys. Res., 90, 3797–3805, doi:10.1029/JD090ID02P03797 (1985).
-
Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
-
Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
-
Welke, B., Ettlinger, K., & Riederer, M.: Sorption of volatile organic chemicals in plant surfaces, Environ. Sci. Technol., 32, 1099–1104, doi:10.1021/ES970763V (1998).
-
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
-
Yu, H.-Z.: The use of Henry’s law constants in the determination of factors that influence VOC concentration in aqueous and gaseous phases in wastewater treatment plant, Master’s thesis, New Jersey Institute of Technology, USA (1992).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
1) |
A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented. |
11) |
Measured at high temperature and extrapolated to T⊖ = 298.15 K. |
12) |
Value at T = 293 K. |
20) |
Calculated using machine learning matrix completion methods (MCMs). |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
186) |
Experimental value, extracted from HENRYWIN. |
231) |
English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown. |
232) |
Value from the training dataset. |
233) |
Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details. |
242) |
Temperature is not specified. |
249) |
Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here. |
250) |
Value from the training set. |
391) |
Value given here as quoted by Gaffney et al. (1987). |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|