MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsInorganic speciesSulfur (S) → sulfur dioxide

FORMULA:SO2
CAS RN:7446-09-5
STRUCTURE
(FROM NIST):
InChIKey:RAHZWNYVWXNFOC-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
1.3×10−2 2900 Burkholder et al. (2019) L 1)
1.3×10−2 2900 Burkholder et al. (2015) L 1)
1.3×10−2 2900 Sander et al. (2011) L 1)
1.3×10−2 2900 Sander et al. (2006) L 1)
1.2×10−2 3100 Yoo et al. (1986) L 1)
1.3×10−2 2900 Young (1983) L 1)
1.2×10−2 3200 Maahs (1982) L
1.2×10−2 3000 Edwards et al. (1978) L 1)
1.4×10−2 2800 Wilhelm et al. (1977) L
4.0×10−1 St-Pierre et al. (2014) M 174)
1.2×10−2 3100 Johnstone and Leppla (1934) M
1.4×10−2 3400 Schoenfeld (1855) M 175)
1.1×10−2 1200 Terraglio and Manganelli (1967) V
1.2×10−2 3100 Chameides (1984) T
1.2×10−2 3100 Edwards et al. (1975) T 1)
1.2×10−2 Rodríguez-Sevilla et al. (2001) X 176)
1.2×10−2 3100 Pandis and Seinfeld (1989) C
1.2×10−2 3300 Beilke and Gravenhorst (1978) C
2.9×10−2 Hayer et al. (2022) Q 20)
1.3×10−2 2900 Yaws et al. (1999) ? 21)
1.5×10−2 3100 Dean and Lange (1999) ? 23) 177)
1.2×10−2 3100 Seinfeld (1986) ? 21)
1.2×10−2 3100 Hoffmann and Jacob (1984) ? 21)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Beilke, S. & Gravenhorst, G.: Heterogeneous SO2-oxidation in the droplet phase, Atmos. Environ., 12, 231–239, doi:10.1016/0004-6981(78)90203-2 (1978).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Chameides, W. L.: The photochemistry of a remote marine stratiform cloud, J. Geophys. Res., 89, 4739–4755, doi:10.1029/JD089ID03P04739 (1984).
  • Dean, J. A. & Lange, N. A.: Lange’s Handbook of Chemistry, Fifteenth Edition, McGraw-Hill, Inc., ISBN 9780070163843 (1999).
  • Edwards, T. J., Newman, J., & Prausnitz, J. M.: Thermodynamics of aqueous solutions containing volatile weak electrolytes, AIChE J., 21, 248–259, doi:10.1002/AIC.690210205 (1975).
  • Edwards, T. J., Maurer, G., Newman, J., & Prausnitz, J. M.: Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes, AIChE J., 24, 966–976, doi:10.1002/AIC.690240605 (1978).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Hoffmann, M. R. & Jacob, D. J.: Kinetics and mechanisms of the catalytic oxidation of dissolved sulfur dioxide in aqueous solution: An application to nighttime fog water chemistry, in: SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations, edited by Calvert, J. G., pp. 101–172, Butterworth Publishers, Boston, MA, ISBN 0250405687 (1984).
  • Johnstone, H. F. & Leppla, P. W.: The solubility of sulfur-dioxide at low partial pressures, J. Am. Chem. Soc., 56, 2233–2238, doi:10.1021/JA01326A009 (1934).
  • Maahs, H. G.: Sulfur-dioxide/water equilibria between 0 and 50C. An examination of data at low concentrations, in: Heterogeneous Atmospheric Chemistry, Geophysical Monograph 26, edited by Schryer, D. R., pp. 187–195, Am. Geophys. Union, Washington, D.C., doi:10.1029/GM026P0187 (1982).
  • Pandis, S. N. & Seinfeld, J. H.: Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry, J. Geophys. Res., 94, 1105–1126, doi:10.1029/JD094ID01P01105 (1989).
  • Rodríguez-Sevilla, J., Álvarez Diaz, M., Diaz Garcia, C., & Limiñana de la Fe, G.: Thermodynamic equilibrium of SO2-H2O system at low partial pressures, Afinidad, 492, 141–146 (2001).
  • Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
  • Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
  • Schoenfeld, F.: Ueber den Absorptionscoëfficienten der schwefligen Säure, des Chlors und des Schwefelwasserstoffs, Liebigs Ann. Chem., 95, 1–23, doi:10.1002/JLAC.18550950102 (1855).
  • Seinfeld, J. H.: Atmospheric Chemistry and Physics of Air Pollution, Wiley-Interscience Publication, NY, ISBN 0471828572 (1986).
  • St-Pierre, J., Wetton, B., Zhai, Y., & Gea, J.: Liquid water scavenging of PEMFC contaminants, J. Electrochem. Soc., 161, E3357–E3364, doi:10.1149/2.0291409JES (2014).
  • Terraglio, F. P. & Manganelli, R. M.: The absorption of atmospheric sulfur dioxide by water solutions, J. Air Pollut. Control Assoc., 17, 403–406, doi:10.1080/00022470.1967.10468999 (1967).
  • Wilhelm, E., Battino, R., & Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, doi:10.1021/CR60306A003 (1977).
  • Yaws, C. L., Hopper, J. R., Wang, X., Rathinsamy, A. K., & Pike, R. W.: Calculating solubility & Henry’s law constants for gases in water, Chem. Eng., pp. 102–105 (1999).
  • Yoo, K.-P., Lee, S. Y., & Lee, W. H.: Ionization and Henry’s law constants for volatile, weak electrolyte water pollutants, Korean J. Chem. Eng., 3, 67–72, doi:10.1007/BF02697525 (1986).
  • Young, C. L.: IUPAC Solubility Data Series, Volume 12, Sulfur Dioxide, Chlorine, Fluorine and Chlorine Oxides, Pergamon Press, Oxford, doi:10.1016/C2013-0-03419-6 (1983).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
23) The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by Buck (1981). The quantities A and α from Dean and Lange (1999) were assumed to be identical.
174) Value at T = 353 K.
175) The data from Schoenfeld (1855) were fitted to the three-parameter equation: Hscp= exp( 265.79241 −9131.99684/T −42.01987 ln(T)) mol m−3 Pa−1, with T in K.
176) Value given here as quoted by Rodríguez-Sevilla et al. (2002).
177) The data from Dean and Lange (1999) were fitted to the three-parameter equation: Hscp= exp( 153.05871 −4328.05304/T −25.05397 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *