Henry's Law Constants

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Henry's Law Constants





Contact, Imprint, Acknowledgements

When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.

Henry's Law ConstantsInorganic speciesRare gases (He, Ne, Ar, Kr, Xe, Rn) → argon

CAS RN:7440-37-1

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
1.4×10−5 1700 Warneck and Williams (2012) L
1.4×10−5 1400 Fernández-Prini et al. (2003) L 3)
1.4×10−5 1500 Abraham and Matteoli (1988) L
1.4×10−5 1500 Clever (1980) L 1)
1.4×10−5 1500 Wilhelm et al. (1977) L
1.4×10−5 1400 Rettich et al. (1992) M 196)
1.4×10−5 1400 Krause and Benson (1989) M
1.4×10−5 Park et al. (1982) M
1.4×10−5 1500 Crovetto et al. (1982) M
1.4×10−5 1200 Cosgrove and Walkley (1981) M 11)
1.4×10−5 1300 Potter II and Clynne (1978) M
1.4×10−5 1500 Murray and Riley (1970) M 197)
1.4×10−5 1600 Shoor et al. (1969) M 198)
1.4×10−5 1500 Ashton et al. (1968) M 199)
1.3×10−5 1500 Morrison and Johnstone (1954) M 200)
1.4×10−5 1800 Friedman (1954) M
1.4×10−5 1400 Lannung (1930) M 201)
1.6×10−5 1300 von Antropoff (1910) M
1.5×10−5 1400 Winkler (1906) M
1.4×10−5 1400 Wauchope and Haque (1972) V
1.4×10−5 1400 Wauchope and Haque (1972) V
1.8×10−5 Pierotti (1965) T
9.5×10−6 Hayer et al. (2022) Q 20)
7.8×10−6 1200 Linnemann et al. (2020) Q 191)
1.1×10−5 1100 Linnemann et al. (2020) Q 202)
1.2×10−5 Warr et al. (2015) Q 12)
1.4×10−5 1500 Yaws et al. (1999) ? 21)
1.2×10−5 Abraham and Weathersby (1994) ? 21)
1.4×10−5 1500 Dean and Lange (1999) ? 23) 203)
1.4×10−5 Abraham et al. (1990) ?


The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.


  • Abraham, M. H. & Matteoli, E.: The temperature variation of the hydrophobic effect, J. Chem. Soc. Faraday Trans. 1, 84, 1985–2000, doi:10.1039/F19888401985 (1988).
  • Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Ashton, J. T., Dawe, R. A., Miller, K. W., Smith, E. B., & Stickings, B. J.: The solubility of certain gaseous fluorine compounds in water, J. Chem. Soc. A, pp. 1793–1796, doi:10.1039/J19680001793 (1968).
  • Clever, H. L.: IUPAC Solubility Data Series, Volume 4, Argon, Pergamon Press, Oxford, ISBN 0080223532 (1980).
  • Cosgrove, B. A. & Walkley, J.: Solubilities of gases in H2O and 2H2O, J. Chromatogr., 216, 161–167, doi:10.1016/S0021-9673(00)82344-4 (1981).
  • Crovetto, R., Fernández-Prini, R., & Japas, M. L.: Solubilities of inert gases and methane in H2O and in D2O in the temperature range of 300 to 600 K, J. Chem. Phys., 76, 1077–1086, doi:10.1063/1.443074 (1982).
  • Dean, J. A. & Lange, N. A.: Lange’s Handbook of Chemistry, Fifteenth Edition, McGraw-Hill, Inc., ISBN 9780070163843 (1999).
  • Fernández-Prini, R., Alvarez, J. L., & Harvey, A. H.: Henry’s constants and vapor-liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures, J. Phys. Chem. Ref. Data, 32, 903–916, doi:10.1063/1.1564818 (2003).
  • Friedman, H. L.: The solubilities of sulfur hexafluoride in water and of the rare gases, sulfur hexafluoride and osmium tetroxide in nitromethane, J. Am. Chem. Soc., 76, 3294–3297, doi:10.1021/JA01641A065 (1954).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Krause, Jr., D. & Benson, B. B.: The solubility and isotopic fractionation of gases in dilute aqueous solution. IIa. solubilities of the noble gases, J. Solution Chem., 18, 823–873, doi:10.1007/BF00685062 (1989).
  • Lannung, A.: The solubilities of helium, neon and argon in water and some organic solvents, J. Am. Chem. Soc., 52, 68–80, doi:10.1021/JA01364A011 (1930).
  • Linnemann, M., Nikolaychuk, P. A., noz Muñoz, Y. M. M., Baumhögger, E., & Vrabec, J.: Henry’s law constant of noble gases in water, methanol, ethanol, and isopropanol by experiment and molecular simulation, J. Chem. Eng. Data, 65, 1180–1188, doi:10.1021/ACS.JCED.9B00565 (2020).
  • Morrison, T. J. & Johnstone, N. B.: Solubilities of the inert gases in water, J. Chem. Soc., pp. 3441–3446, doi:10.1039/JR9540003441 (1954).
  • Murray, C. N. & Riley, J. P.: The solubility of gases in distilled water and sea water — III. Argon, Deep-Sea Res. Oceanogr. Abstr., 17, 203–209, doi:10.1016/0011-7471(70)90100-2 (1970).
  • Park, T., Rettich, T. R., Battino, R., Peterson, D., & Wilhelm, E.: Solubility of gases in liquids. 14. Bunsen coefficients for several fluorine-containing gases (Freons) dissolved in water at 298.15K, J. Chem. Eng. Data, 27, 324–326, doi:10.1021/JE00029A027 (1982).
  • Pierotti, R. A.: Aqueous solutions of nonpolar gases, J. Phys. Chem., 69, 281–288, doi:10.1021/J100885A043 (1965).
  • Potter II, R. W. & Clynne, M. A.: The solubility of the noble gases He, Ne, Ar, Kr, and Xe in water up to the critical point, J. Solution Chem., 7, 837–844, doi:10.1007/BF00650811 (1978).
  • Rettich, T. R., Battino, R., & Wilhelm, E.: Solubility of gases in liquids. 18. High-precision determination of Henry fugacities for argon in liquid water at 2 to 40C, J. Solution Chem., 21, 987–1004, doi:10.1007/BF00650874 (1992).
  • Shoor, S. K., Walker, Jr., R. D., & Gubbins, K. E.: Salting out of nonpolar gases in aqueous potassium hydroxide solutions, J. Phys. Chem., 73, 312–317, doi:10.1021/J100722A006 (1969).
  • von Antropoff, A.: The solubility of xenon, krypton, argon, neon, and helium in water, Proc. R. Soc. Lond. A, 83, 474–482, doi:10.1098/RSPA.1910.0036 (1910).
  • Warneck, P. & Williams, J.: The Atmospheric Chemist’s Companion: Numerical Data for Use in the Atmospheric Sciences, Springer Verlag, doi:10.1007/978-94-007-2275-0 (2012).
  • Warr, O., Ballentine, C. J., Mu, J., & Masters, A.: Optimizing noble gas-water interactions via Monte Carlo simulations, J. Phys. Chem. B, 119, 14 486–14 495, doi:10.1021/ACS.JPCB.5B06389 (2015).
  • Wauchope, R. D. & Haque, R.: Aqueous solutions of nonpolar compounds. Heat-capacity effects, Can. J. Chem., 50, 133–138, doi:10.1139/V72-022 (1972).
  • Wilhelm, E., Battino, R., & Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, doi:10.1021/CR60306A003 (1977).
  • Winkler, L. W.: Gesetzmässigkeit bei der Absorption der Gase in Flüssigkeiten, Z. Phys. Chem., 55, 344–354, doi:10.1515/ZPCH-1906-5518 (1906).
  • Yaws, C. L., Hopper, J. R., Wang, X., Rathinsamy, A. K., & Pike, R. W.: Calculating solubility & Henry’s law constants for gases in water, Chem. Eng., pp. 102–105 (1999).


Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.


1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
3) The vapor pressure for water from Wagner and Pruss (1993) was used to calculate Hs.
11) Measured at high temperature and extrapolated to T = 298.15 K.
12) Value at T = 293 K.
20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
23) The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by Buck (1981). The quantities A and α from Dean and Lange (1999) were assumed to be identical.
191) Calculated employing molecular force field models for the solutes from Warr et al. (2015).
196) The data from Rettich et al. (1992) were fitted to the three-parameter equation: Hscp= exp( −178.55165 +8674.63293/T +24.26764 ln(T)) mol m−3 Pa−1, with T in K.
197) The data from Murray and Riley (1970) were fitted to the three-parameter equation: Hscp= exp( −151.84230 +7548.13106/T +20.24085 ln(T)) mol m−3 Pa−1, with T in K.
198) The data from Shoor et al. (1969) were fitted to the three-parameter equation: Hscp= exp( −177.19900 +8740.49327/T +23.99118 ln(T)) mol m−3 Pa−1, with T in K.
199) The data from Ashton et al. (1968) were fitted to the three-parameter equation: Hscp= exp( −160.52023 +7898.05096/T +21.56102 ln(T)) mol m−3 Pa−1, with T in K.
200) The data from Morrison and Johnstone (1954) were fitted to the three-parameter equation: Hscp= exp( −159.49603 +7859.86242/T +21.39868 ln(T)) mol m−3 Pa−1, with T in K.
201) The data from Lannung (1930) were fitted to the three-parameter equation: Hscp= exp( −183.19260 +8856.79081/T +24.97248 ln(T)) mol m−3 Pa−1, with T in K.
202) Calculated employing molecular force field models for the solutes from Vrabec et al. (2001).
203) The data from Dean and Lange (1999) were fitted to the three-parameter equation: Hscp= exp( −143.77232 +7158.59719/T +19.05403 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants


* * *