MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsInorganic speciesRare gases (He, Ne, Ar, Kr, Xe, Rn) → krypton

FORMULA:Kr
CAS RN:7439-90-9
STRUCTURE
(FROM NIST):
InChIKey:DNNSSWSSYDEUBZ-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
2.5×10−5 1700 Fernández-Prini et al. (2003) L 3)
2.5×10−5 1900 Abraham and Matteoli (1988) L
2.5×10−5 1900 Clever (1979b) L 1)
2.5×10−5 1900 Wilhelm et al. (1977) L
2.0×10−5 Steward et al. (1973) L 14)
2.5×10−5 2000 Allott et al. (1973) L
2.5×10−5 1800 Krause and Benson (1989) M
2.5×10−5 1900 Crovetto et al. (1982) M
2.6×10−5 1800 Cosgrove and Walkley (1981) M 11)
2.4×10−5 1700 Morrison and Johnstone (1954) M 204)
3.4×10−5 1400 von Antropoff (1910) M 205)
2.8×10−5 1900 von Antropoff (1910) M 205)
2.4×10−5 1800 Wauchope and Haque (1972) V
4.4×10−5 Pierotti (1965) T
2.6×10−5 Hayer et al. (2022) Q 20)
1.5×10−5 1600 Linnemann et al. (2020) Q 191)
1.6×10−5 1400 Linnemann et al. (2020) Q 202)
2.5×10−5 Warr et al. (2015) Q 12)
2.5×10−5 1900 Yaws et al. (1999) ? 21)
2.0×10−5 Abraham and Weathersby (1994) ? 21)
2.5×10−5 1800 Dean and Lange (1999) ? 23) 206)
2.5×10−5 Abraham et al. (1990) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H. & Matteoli, E.: The temperature variation of the hydrophobic effect, J. Chem. Soc. Faraday Trans. 1, 84, 1985–2000, doi:10.1039/F19888401985 (1988).
  • Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Allott, P. R., Steward, A., Flook, V., & Mapleson, W. W.: Variation with temperature of the solubilities of inhaled anaesthestics in water, oil and biological media, Br. J. Anaesth., 45, 294–300, doi:10.1093/BJA/45.3.294 (1973).
  • Clever, H. L.: IUPAC Solubility Data Series, Volume 2, Krypton, Xenon and Radon, Pergamon Press, Oxford, ISBN 0080223524 (1979b).
  • Cosgrove, B. A. & Walkley, J.: Solubilities of gases in H2O and 2H2O, J. Chromatogr., 216, 161–167, doi:10.1016/S0021-9673(00)82344-4 (1981).
  • Crovetto, R., Fernández-Prini, R., & Japas, M. L.: Solubilities of inert gases and methane in H2O and in D2O in the temperature range of 300 to 600 K, J. Chem. Phys., 76, 1077–1086, doi:10.1063/1.443074 (1982).
  • Dean, J. A. & Lange, N. A.: Lange’s Handbook of Chemistry, Fifteenth Edition, McGraw-Hill, Inc., ISBN 9780070163843 (1999).
  • Fernández-Prini, R., Alvarez, J. L., & Harvey, A. H.: Henry’s constants and vapor-liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures, J. Phys. Chem. Ref. Data, 32, 903–916, doi:10.1063/1.1564818 (2003).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Krause, Jr., D. & Benson, B. B.: The solubility and isotopic fractionation of gases in dilute aqueous solution. IIa. solubilities of the noble gases, J. Solution Chem., 18, 823–873, doi:10.1007/BF00685062 (1989).
  • Linnemann, M., Nikolaychuk, P. A., noz Muñoz, Y. M. M., Baumhögger, E., & Vrabec, J.: Henry’s law constant of noble gases in water, methanol, ethanol, and isopropanol by experiment and molecular simulation, J. Chem. Eng. Data, 65, 1180–1188, doi:10.1021/ACS.JCED.9B00565 (2020).
  • Morrison, T. J. & Johnstone, N. B.: Solubilities of the inert gases in water, J. Chem. Soc., pp. 3441–3446, doi:10.1039/JR9540003441 (1954).
  • Pierotti, R. A.: Aqueous solutions of nonpolar gases, J. Phys. Chem., 69, 281–288, doi:10.1021/J100885A043 (1965).
  • Steward, A., Allott, P. R., Cowles, A. L., & Mapleson, W. W.: Solubility coefficients for inhaled anaesthetics for water, oil and biological media, Br. J. Anaesth., 45, 282–293, doi:10.1093/BJA/45.3.282 (1973).
  • von Antropoff, A.: The solubility of xenon, krypton, argon, neon, and helium in water, Proc. R. Soc. Lond. A, 83, 474–482, doi:10.1098/RSPA.1910.0036 (1910).
  • Warr, O., Ballentine, C. J., Mu, J., & Masters, A.: Optimizing noble gas-water interactions via Monte Carlo simulations, J. Phys. Chem. B, 119, 14 486–14 495, doi:10.1021/ACS.JPCB.5B06389 (2015).
  • Wauchope, R. D. & Haque, R.: Aqueous solutions of nonpolar compounds. Heat-capacity effects, Can. J. Chem., 50, 133–138, doi:10.1139/V72-022 (1972).
  • Wilhelm, E., Battino, R., & Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, doi:10.1021/CR60306A003 (1977).
  • Yaws, C. L., Hopper, J. R., Wang, X., Rathinsamy, A. K., & Pike, R. W.: Calculating solubility & Henry’s law constants for gases in water, Chem. Eng., pp. 102–105 (1999).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
3) The vapor pressure for water from Wagner and Pruss (1993) was used to calculate Hs.
11) Measured at high temperature and extrapolated to T = 298.15 K.
12) Value at T = 293 K.
14) Value at T = 310 K.
20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
23) The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by Buck (1981). The quantities A and α from Dean and Lange (1999) were assumed to be identical.
191) Calculated employing molecular force field models for the solutes from Warr et al. (2015).
202) Calculated employing molecular force field models for the solutes from Vrabec et al. (2001).
204) The data from Morrison and Johnstone (1954) were fitted to the three-parameter equation: Hscp= exp( −153.87925 +7855.39037/T +20.51280 ln(T)) mol m−3 Pa−1, with T in K.
205) Two series of measurements with considerably different results are presented by von Antropoff (1910) for krypton.
206) The data from Dean and Lange (1999) were fitted to the three-parameter equation: Hscp= exp( −220.92114 +10903.79433/T +30.49407 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *