When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
1.2×10−2 |
4300 |
Burkholder et al. (2019) |
L |
1)
|
9.0×10−3 |
4600 |
Burkholder et al. (2019) |
L |
71)
|
9.0×10−3 |
4600 |
Burkholder et al. (2015) |
L |
71)
|
1.2×10−2 |
4300 |
Brockbank (2013) |
L |
1)
780)
|
3.1×10−2 |
|
Mackay and Shiu (1981) |
L |
|
1.2×10−2 |
5000 |
Hiatt (2013) |
M |
|
8.9×10−3 |
4400 |
Ooki and Yokouchi (2011) |
M |
71)
|
1.4×10−2 |
|
Dohnal and Hovorka (1999) |
M |
12)
|
1.5×10−2 |
|
Hovorka and Dohnal (1997) |
M |
12)
|
1.2×10−2 |
4900 |
Kondoh and Nakajima (1997) |
M |
|
9.7×10−3 |
3800 |
Moore et al. (1995) |
M |
71)
781)
|
1.1×10−2 |
4000 |
Wright et al. (1992) |
M |
782)
|
1.1×10−2 |
4100 |
Tse et al. (1992) |
M |
|
1.1×10−2 |
4400 |
Rex (1906) |
M |
|
1.1×10−2 |
|
Mackay et al. (2006b) |
V |
|
1.3×10−2 |
4200 |
Fogg and Sangster (2003) |
V |
|
7.1×10−3 |
|
Mackay et al. (1993) |
V |
|
1.1×10−2 |
|
Hine and Mookerjee (1975) |
V |
|
1.1×10−2 |
|
Yaws (2003) |
X |
238)
|
3.2×10−2 |
|
Gharagheizi et al. (2012) |
Q |
|
6.2×10−3 |
|
Raventos-Duran et al. (2010) |
Q |
243)
244)
|
4.9×10−2 |
|
Raventos-Duran et al. (2010) |
Q |
245)
|
9.9×10−3 |
|
Raventos-Duran et al. (2010) |
Q |
246)
|
1.2×10−1 |
|
Gharagheizi et al. (2010) |
Q |
247)
|
3.8×10−2 |
|
Hilal et al. (2008) |
Q |
|
1.7×10−3 |
|
Modarresi et al. (2007) |
Q |
68)
|
|
4500 |
Kühne et al. (2005) |
Q |
|
1.2×10−2 |
|
Yaffe et al. (2003) |
Q |
249)
250)
|
8.2×10−3 |
|
Yao et al. (2002) |
Q |
230)
268)
|
2.7×10−3 |
|
Katritzky et al. (1998) |
Q |
|
9.5×10−3 |
|
Nirmalakhandan and Speece (1988) |
Q |
|
1.2×10−2 |
|
Mackay et al. (2006b) |
? |
|
|
4300 |
Kühne et al. (2005) |
? |
|
1.1×10−2 |
|
Yaws (1999) |
? |
21)
|
1.2×10−2 |
|
Mackay et al. (1993) |
? |
|
1.1×10−2 |
|
Abraham et al. (1990) |
? |
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
-
Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
-
Dohnal, V. & Hovorka, Š.: Exponential saturator: a novel gas-liquid partitioning technique for measurement of large limiting activity coefficients, Ind. Eng. Chem. Res., 38, 2036–2043, doi:10.1021/IE980743H (1999).
-
Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
-
Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
-
Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
-
Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
-
Hovorka, Š. & Dohnal, V.: Determination of air–water partitioning of volatile halogenated hydrocarbons by the inert gas stripping method, J. Chem. Eng. Data, 42, 924–933, doi:10.1021/JE970046G (1997).
-
Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
-
Kondoh, H. & Nakajima, T.: Optimization of headspace cryofocus gas chromatography/mass spectrometry for the analysis of 54 volatile organic compounds, and the measurement of their Henry’s constants, J. Environ. Chem., 7, 81–89, doi:10.5985/JEC.7.81 (1997).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Mackay, D. & Shiu, W. Y.: A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, doi:10.1063/1.555654 (1981).
-
Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton, ISBN 0873719735 (1993).
-
Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. II of Halogenated Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006b).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Moore, R. M., Geen, C. E., & Tait, V. K.: Determination of Henry’s law constants for a suite of naturally occuring halogenated methanes in seawater, Chemosphere, 30, 1183–1191, doi:10.1016/0045-6535(95)00009-W (1995).
-
Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
-
Ooki, A. & Yokouchi, Y.: Determination of Henry’s law constant of halocarbons in seawater and analysis of sea-to-air flux of iodoethane (C2H5I) in the Indian and Southern Oceans based on partial pressure measurements, Geochem. J., 45, e1–e7, doi:10.2343/GEOCHEMJ.1.0122 (2011).
-
Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
-
Rex, A.: Über die Löslichkeit der Halogenderivate der Kohlenwasserstoffe in Wasser, Z. Phys. Chem., 55, 355–370, doi:10.1515/ZPCH-1906-5519 (1906).
-
Tse, G., Orbey, H., & Sandler, S. I.: Infinite dilution activity coefficients and Henry’s law coefficients of some priority water pollutants determined by a relative gas chromatographic method, Environ. Sci. Technol., 26, 2017–2022, doi:10.1021/ES00034A021 (1992).
-
Wright, D. A., Sandler, S. I., & DeVoll, D.: Infinite dilution activity coefficients and solubilities of halogenated hydrocarbons in water at ambient temperatures, Environ. Sci. Technol., 26, 1828–1831, doi:10.1021/ES00033A018 (1992).
-
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
-
Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
1) |
A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented. |
12) |
Value at T = 293 K. |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
71) |
Solubility in sea water. |
230) |
Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm. |
238) |
Value given here as quoted by Gharagheizi et al. (2010). |
243) |
Value from the training dataset. |
244) |
Calculated using the GROMHE model. |
245) |
Calculated using the SPARC approach. |
246) |
Calculated using the HENRYWIN method. |
247) |
Calculated using a combination of a group contribution method and neural networks. |
249) |
Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here. |
250) |
Value from the training set. |
268) |
Value from the test set. |
780) |
Values at 298 K in Tables C2 and C5 of Brockbank (2013) are inconsistent, with 6 % difference. |
781) |
The data from Moore et al. (1995) were fitted to the three-parameter equation: Hscp= exp( −395.20167 +20638.03484/T +56.40082 ln(T)) mol m−3 Pa−1, with T in K. |
782) |
The data from Wright et al. (1992) were fitted to the three-parameter equation: Hscp= exp( −82.06673 +6867.92071/T +9.56720 ln(T)) mol m−3 Pa−1, with T in K. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|