When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | CH3Cl |
TRIVIAL NAME:
|
methyl chloride
|
CAS RN: | 74-87-3 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | NEHMKBQYUWJMIP-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
1.0×10−3 |
2900 |
Schwardt et al. (2021) |
L |
1)
|
1.0×10−3 |
2900 |
Burkholder et al. (2019) |
L |
1)
|
8.7×10−4 |
3400 |
Burkholder et al. (2019) |
L |
71)
|
1.1×10−3 |
3300 |
Burkholder et al. (2015) |
L |
|
8.7×10−4 |
3400 |
Burkholder et al. (2015) |
L |
71)
|
1.0×10−3 |
2800 |
Brockbank (2013) |
L |
1)
|
1.3×10−3 |
3300 |
Sander et al. (2011) |
L |
648)
|
1.1×10−3 |
3300 |
Warneck (2007) |
L |
|
1.3×10−3 |
3300 |
Sander et al. (2006) |
L |
649)
|
1.1×10−3 |
3300 |
Staudinger and Roberts (2001) |
L |
|
1.1×10−3 |
|
Mackay and Shiu (1981) |
L |
|
1.0×10−3 |
2800 |
Wilhelm et al. (1977) |
L |
|
7.9×10−4 |
2400 |
Hiatt (2013) |
M |
|
9.1×10−4 |
2000 |
Chen et al. (2012) |
M |
|
8.8×10−4 |
3200 |
Moore (2000) |
M |
71)
|
9.3×10−4 |
3300 |
Moore et al. (1995) |
M |
71)
|
8.5×10−4 |
2800 |
Reichl (1995) |
M |
650)
|
1.1×10−3 |
3000 |
Elliott and Rowland (1993) |
M |
|
1.2×10−3 |
4200 |
Gossett (1987) |
M |
|
1.4×10−3 |
|
Pearson and McConnell (1975) |
M |
12)
651)
|
1.1×10−3 |
2600 |
Swain and Thornton (1962) |
M |
|
9.9×10−4 |
2500 |
Boggs and Buck (1958) |
M |
|
1.0×10−3 |
2900 |
Glew and Moelwyn-Hughes (1953) |
M |
652)
|
1.0×10−3 |
|
Mackay et al. (2006b) |
V |
|
4.2×10−4 |
|
Lide and Frederikse (1995) |
V |
|
1.0×10−3 |
|
Mackay et al. (1993) |
V |
|
1.1×10−3 |
|
Dilling (1977) |
V |
653)
|
1.2×10−3 |
|
Dilling (1977) |
V |
12)
|
9.9×10−4 |
|
Hine and Mookerjee (1975) |
V |
|
1.2×10−3 |
|
Yaws (2003) |
X |
238)
|
2.9×10−4 |
-630 |
Goldstein (1982) |
X |
299)
|
2.5×10−5 |
|
Ryan et al. (1988) |
C |
|
1.1×10−3 |
|
Hayer et al. (2022) |
Q |
20)
|
2.7×10−4 |
|
Wang et al. (2017) |
Q |
81)
239)
|
1.4×10−3 |
|
Wang et al. (2017) |
Q |
81)
240)
|
1.8×10−3 |
|
Wang et al. (2017) |
Q |
81)
241)
|
9.9×10−4 |
|
Li et al. (2014) |
Q |
242)
|
6.8×10−4 |
|
Gharagheizi et al. (2012) |
Q |
|
7.8×10−4 |
|
Raventos-Duran et al. (2010) |
Q |
244)
272)
|
1.2×10−3 |
|
Raventos-Duran et al. (2010) |
Q |
245)
|
1.2×10−3 |
|
Raventos-Duran et al. (2010) |
Q |
246)
|
1.0×10−3 |
|
Gharagheizi et al. (2010) |
Q |
247)
|
1.0×10−3 |
|
Hilal et al. (2008) |
Q |
|
1.9×10−3 |
|
Modarresi et al. (2007) |
Q |
68)
|
|
2600 |
Kühne et al. (2005) |
Q |
|
1.1×10−3 |
|
Yaffe et al. (2003) |
Q |
249)
250)
|
8.6×10−4 |
|
Yao et al. (2002) |
Q |
230)
|
1.0×10−3 |
|
English and Carroll (2001) |
Q |
231)
232)
|
3.7×10−4 |
|
Katritzky et al. (1998) |
Q |
|
8.6×10−4 |
|
Suzuki et al. (1992) |
Q |
233)
|
3.9×10−4 |
|
Nirmalakhandan and Speece (1988) |
Q |
|
8.6×10−4 |
|
Irmann (1965) |
Q |
|
1.1×10−3 |
|
Mackay et al. (2006b) |
? |
|
|
2700 |
Kühne et al. (2005) |
? |
|
1.2×10−3 |
|
Yaws (1999) |
? |
21)
|
6.9×10−4 |
|
Abraham and Weathersby (1994) |
? |
21)
|
1.2×10−3 |
|
Yaws and Yang (1992) |
? |
21)
|
1.0×10−3 |
|
Abraham et al. (1990) |
? |
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
-
Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
-
Boggs, J. E. & Buck, Jr., A. E.: The solubility of some chloromethanes in water, J. Phys. Chem., 62, 1459–1461, doi:10.1021/J150569A031 (1958).
-
Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
-
Chen, F., Freedman, D. L., Falta, R. W., & Murdoch, L. C.: Henry’s law constants of chlorinated solvents at elevated temperatures, Chemosphere, 86, 156–165, doi:10.1016/J.CHEMOSPHERE.2011.10.004 (2012).
-
Dilling, W. L.: Interphase transfer processes. II. Evaporation rates of chloro methanes, ethanes, ethylenes, propanes, and propylenes from dilute aqueous solutions. Comparisons with theoretical predictions, Environ. Sci. Technol., 11, 405–409, doi:10.1021/ES60127A009 (1977).
-
Elliott, S. & Rowland, F. S.: Nucleophilic substitution rates and solubilities for methyl halides in seawater, Geophys. Res. Lett., 20, 1043–1046, doi:10.1029/93GL01081 (1993).
-
English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
-
Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
-
Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
-
Glew, D. N. & Moelwyn-Hughes, E. A.: Chemical statics of the methyl halides in water, Discuss. Faraday Soc., 15, 150–161, doi:10.1039/DF9531500150 (1953).
-
Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry’s law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA (1982).
-
Gossett, J. M.: Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons, Environ. Sci. Technol., 21, 202–208, doi:10.1021/ES00156A012 (1987).
-
Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
-
Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
-
Irmann, F.: Eine einfache Korrelation zwischen Wasserlöslichkeit und Struktur von Kohlenwasserstoffen und Halogenkohlenwasserstoffen, Chem.-Ing.-Tech., 37, 789–798, doi:10.1002/CITE.330370802 (1965).
-
Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Lide, D. R. & Frederikse, H. P. R.: CRC Handbook of Chemistry and Physics, 76th Edition, CRC Press, Inc., Boca Raton, FL, ISBN 0849304768 (1995).
-
Li, H., Wang, X., Yi, T., Xu, Z., & Liu, X.: Prediction of Henry’s law constants for organic compounds using multilayer feedforward neural networks based on linear salvation energy relationship, J. Chem. Pharm. Res., 6, 1557–1564 (2014).
-
Mackay, D. & Shiu, W. Y.: A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, doi:10.1063/1.555654 (1981).
-
Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton, ISBN 0873719735 (1993).
-
Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. II of Halogenated Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006b).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Moore, R. M.: The solubility of a suite of low molecular weight organochlorine compounds in seawater and implications for estimating the marine source of methyl chloride to the atmosphere, Chemosphere Global Change Sci., 2, 95–99, doi:10.1016/S1465-9972(99)00045-8 (2000).
-
Moore, R. M., Geen, C. E., & Tait, V. K.: Determination of Henry’s law constants for a suite of naturally occuring halogenated methanes in seawater, Chemosphere, 30, 1183–1191, doi:10.1016/0045-6535(95)00009-W (1995).
-
Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
-
Pearson, C. R. & McConnell, G.: Chlorinated C1 and C2 hydrocarbons in the marine environment, Proc. R. Soc. Lond. B, 189, 305–332, doi:10.1098/RSPB.1975.0059 (1975).
-
Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
-
Reichl, A.: Messung und Korrelierung von Gaslöslichkeiten halogenierter Kohlenwasserstoffe, Ph.D. thesis, Technische Universität Berlin, Germany (1995).
-
Ryan, J. A., Bell, R. M., Davidson, J. M., & O’Connor, G. A.: Plant uptake of non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323, doi:10.1016/0045-6535(88)90142-7 (1988).
-
Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
-
Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
-
Schwardt, A., Dahmke, A., & Köber, R.: Henry’s law constants of volatile organic compounds between 0 and 95∘C – Data compilation and complementation in context of urban temperature increases of the subsurface, Chemosphere, 272, 129 858, doi:10.1016/J.CHEMOSPHERE.2021.129858 (2021).
-
Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
-
Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
-
Swain, C. G. & Thornton, E. R.: Initial-state and transition-state isotope effects of methyl halides in light and heavy water, J. Am. Chem. Soc., 84, 822–826, doi:10.1021/JA00864A029 (1962).
-
Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
-
Warneck, P.: A review of Henry’s law coefficients for chlorine-containing C1 and C2 hydrocarbons, Chemosphere, 69, 347–361, doi:10.1016/J.CHEMOSPHERE.2007.04.088 (2007).
-
Wilhelm, E., Battino, R., & Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, doi:10.1021/CR60306A003 (1977).
-
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
-
Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
-
Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
1) |
A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented. |
12) |
Value at T = 293 K. |
20) |
Calculated using machine learning matrix completion methods (MCMs). |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
71) |
Solubility in sea water. |
81) |
Value at T = 288 K. |
230) |
Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm. |
231) |
English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown. |
232) |
Value from the training dataset. |
233) |
Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details. |
238) |
Value given here as quoted by Gharagheizi et al. (2010). |
239) |
Calculated using linear free energy relationships (LFERs). |
240) |
Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC). |
241) |
Calculated using COSMOtherm. |
242) |
Temperature is not specified. |
244) |
Calculated using the GROMHE model. |
245) |
Calculated using the SPARC approach. |
246) |
Calculated using the HENRYWIN method. |
247) |
Calculated using a combination of a group contribution method and neural networks. |
249) |
Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here. |
250) |
Value from the training set. |
272) |
Value from the validation dataset. |
299) |
Value given here as quoted by Staudinger and Roberts (1996). |
648) |
The H298 and A, B data listed in Table 5.4 of Sander et al. (2011) are inconsistent, with 9 % difference. |
649) |
The H298 and A, B data listed in Table 5.4 of Sander et al. (2006) are inconsistent, with 9 % difference. |
650) |
The data from Reichl (1995) were fitted to the three-parameter equation: Hscp= exp( −251.05500 +13259.10200/T +35.01685 ln(T)) mol m−3 Pa−1, with T in K. |
651) |
The same data were also published in McConnell et al. (1975). |
652) |
The data from Glew and Moelwyn-Hughes (1953) were fitted to the three-parameter equation: Hscp= exp( −171.13914 +9743.00524/T +23.09616 ln(T)) mol m−3 Pa−1, with T in K. |
653) |
Values at different temperatures are from different sources. Thus a temperature dependence was not calculated. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|