When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | C2H4 |
TRIVIAL NAME:
|
ethylene
|
CAS RN: | 74-85-1 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | VGGSQFUCUMXWEO-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
5.9×10−5 |
2200 |
Burkholder et al. (2019) |
L |
1)
|
5.9×10−5 |
2200 |
Burkholder et al. (2015) |
L |
1)
|
5.9×10−5 |
2200 |
Sander et al. (2011) |
L |
1)
|
5.9×10−5 |
2200 |
Sander et al. (2006) |
L |
1)
|
4.8×10−5 |
2000 |
Plyasunov and Shock (2000) |
L |
|
4.7×10−5 |
2000 |
Hayduk (1994) |
L |
1)
|
4.6×10−5 |
|
Mackay and Shiu (1981) |
L |
|
4.7×10−5 |
1800 |
Wilhelm et al. (1977) |
L |
|
3.5×10−5 |
|
Steward et al. (1973) |
L |
14)
|
4.6×10−5 |
2200 |
Allott et al. (1973) |
L |
|
4.9×10−5 |
2000 |
Maaßen (1995) |
M |
307)
|
4.8×10−5 |
1900 |
Reichl (1995) |
M |
308)
|
4.7×10−5 |
|
McAuliffe (1966) |
M |
|
4.7×10−5 |
2000 |
Morrison and Billett (1952) |
M |
309)
|
4.8×10−5 |
|
Orcutt and Seevers (1937a) |
M |
|
3.4×10−5 |
|
Grollman (1929) |
M |
59)
|
4.8×10−5 |
2300 |
Winkler (1906) |
M |
|
4.6×10−5 |
|
Hine and Mookerjee (1975) |
V |
|
4.7×10−5 |
1900 |
Wauchope and Haque (1972) |
V |
|
3.1×10−5 |
|
Pierotti (1965) |
T |
|
4.7×10−5 |
|
Yaws (2003) |
X |
238)
|
4.7×10−5 |
|
Deno and Berkheimer (1960) |
C |
|
3.4×10−5 |
|
Hayer et al. (2022) |
Q |
20)
|
2.0×10−5 |
|
Keshavarz et al. (2022) |
Q |
|
4.0×10−3 |
|
Duchowicz et al. (2020) |
Q |
300)
|
2.1×10−4 |
|
Wang et al. (2017) |
Q |
81)
239)
|
2.6×10−5 |
|
Wang et al. (2017) |
Q |
81)
240)
|
8.3×10−5 |
|
Wang et al. (2017) |
Q |
81)
241)
|
4.6×10−5 |
|
Li et al. (2014) |
Q |
242)
|
2.4×10−5 |
|
Gharagheizi et al. (2012) |
Q |
|
7.8×10−5 |
|
Raventos-Duran et al. (2010) |
Q |
243)
244)
|
2.5×10−5 |
|
Raventos-Duran et al. (2010) |
Q |
245)
|
9.9×10−5 |
|
Raventos-Duran et al. (2010) |
Q |
246)
|
6.8×10−5 |
|
Gharagheizi et al. (2010) |
Q |
247)
|
2.9×10−5 |
|
Hilal et al. (2008) |
Q |
|
1.0×10−4 |
|
Modarresi et al. (2007) |
Q |
68)
|
|
2700 |
Kühne et al. (2005) |
Q |
|
4.7×10−5 |
|
Yaffe et al. (2003) |
Q |
249)
250)
|
8.2×10−5 |
|
English and Carroll (2001) |
Q |
231)
232)
|
1.5×10−5 |
|
Katritzky et al. (1998) |
Q |
|
9.5×10−5 |
|
Suzuki et al. (1992) |
Q |
233)
|
5.2×10−5 |
|
Nirmalakhandan and Speece (1988) |
Q |
|
4.3×10−5 |
|
Duchowicz et al. (2020) |
? |
21)
186)
|
|
1900 |
Kühne et al. (2005) |
? |
|
4.8×10−5 |
|
Yaws (1999) |
? |
21)
|
5.1×10−5 |
2400 |
Yaws et al. (1999) |
? |
21)
|
3.9×10−5 |
|
Abraham and Weathersby (1994) |
? |
21)
|
4.8×10−5 |
2000 |
Dean and Lange (1999) |
? |
23)
310)
|
4.7×10−5 |
|
Yaws and Yang (1992) |
? |
21)
|
4.6×10−5 |
|
Abraham et al. (1990) |
? |
|
4.8×10−5 |
|
Seinfeld (1986) |
? |
21)
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
-
Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
-
Allott, P. R., Steward, A., Flook, V., & Mapleson, W. W.: Variation with temperature of the solubilities of inhaled anaesthestics in water, oil and biological media, Br. J. Anaesth., 45, 294–300, doi:10.1093/BJA/45.3.294 (1973).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
-
Dean, J. A. & Lange, N. A.: Lange’s Handbook of Chemistry, Fifteenth Edition, McGraw-Hill, Inc., ISBN 9780070163843 (1999).
-
Deno, N. C. & Berkheimer, H. E.: Activity coefficients as a functon of structure and media, J. Chem. Eng. Data, 5, 1–5, doi:10.1021/JE60005A001 (1960).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
-
Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
-
Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
-
Grollman, A.: The solubility of gases in blood and blood fluids, J. Biol. Chem., 82, 317–325, doi:10.1016/S0021-9258(20)78278-5 (1929).
-
Hayduk, W.: IUPAC Solubility Data Series, Volume 57, Ethene, Pergamon Press, Oxford (1994).
-
Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
-
Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
-
Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Li, H., Wang, X., Yi, T., Xu, Z., & Liu, X.: Prediction of Henry’s law constants for organic compounds using multilayer feedforward neural networks based on linear salvation energy relationship, J. Chem. Pharm. Res., 6, 1557–1564 (2014).
-
Maaßen, S.: Experimentelle Bestimmung und Korrelierung von Verteilungskoeffizienten in verdünnten Lösungen, Ph.D. thesis, Technische Universität Berlin, Germany, ISBN 3826511042 (1995).
-
Mackay, D. & Shiu, W. Y.: A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, doi:10.1063/1.555654 (1981).
-
McAuliffe, C.: Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin, and aromatic hydrocarbons, J. Phys. Chem., 70, 1267–1275, doi:10.1021/J100876A049 (1966).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Morrison, T. J. & Billett, F.: 730. The salting-out of non-electrolytes. Part II. The effect of variation in non-electrolyte, J. Chem. Soc., pp. 3819–3822, doi:10.1039/JR9520003819 (1952).
-
Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
-
Orcutt, F. S. & Seevers, M. H.: A method for determining the solubility of gases in pure liquids or solutions by the Van Slyke-Neill manometric apparatus, J. Biol. Chem., 117, 501–507, doi:10.1016/S0021-9258(18)74550-X (1937a).
-
Pierotti, R. A.: Aqueous solutions of nonpolar gases, J. Phys. Chem., 69, 281–288, doi:10.1021/J100885A043 (1965).
-
Plyasunov, A. V. & Shock, E. L.: Thermodynamic functions of hydration of hydrocarbons at 298.15K and 0.1MPa, Geochim. Cosmochim. Acta, 64, 439–468, doi:10.1016/S0016-7037(99)00330-0 (2000).
-
Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
-
Reichl, A.: Messung und Korrelierung von Gaslöslichkeiten halogenierter Kohlenwasserstoffe, Ph.D. thesis, Technische Universität Berlin, Germany (1995).
-
Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
-
Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
-
Seinfeld, J. H.: Atmospheric Chemistry and Physics of Air Pollution, Wiley-Interscience Publication, NY, ISBN 0471828572 (1986).
-
Steward, A., Allott, P. R., Cowles, A. L., & Mapleson, W. W.: Solubility coefficients for inhaled anaesthetics for water, oil and biological media, Br. J. Anaesth., 45, 282–293, doi:10.1093/BJA/45.3.282 (1973).
-
Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
-
Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
-
Wauchope, R. D. & Haque, R.: Aqueous solutions of nonpolar compounds. Heat-capacity effects, Can. J. Chem., 50, 133–138, doi:10.1139/V72-022 (1972).
-
Wilhelm, E., Battino, R., & Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, doi:10.1021/CR60306A003 (1977).
-
Winkler, L. W.: Gesetzmässigkeit bei der Absorption der Gase in Flüssigkeiten, Z. Phys. Chem., 55, 344–354, doi:10.1515/ZPCH-1906-5518 (1906).
-
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
-
Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
-
Yaws, C. L., Hopper, J. R., Wang, X., Rathinsamy, A. K., & Pike, R. W.: Calculating solubility & Henry’s law constants for gases in water, Chem. Eng., pp. 102–105 (1999).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
1) |
A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented. |
14) |
Value at T = 310 K. |
20) |
Calculated using machine learning matrix completion methods (MCMs). |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
23) |
The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by Buck (1981). The quantities A and α from Dean and Lange (1999) were assumed to be identical. |
59) |
Value at T = 311 K. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
81) |
Value at T = 288 K. |
186) |
Experimental value, extracted from HENRYWIN. |
231) |
English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown. |
232) |
Value from the training dataset. |
233) |
Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details. |
238) |
Value given here as quoted by Gharagheizi et al. (2010). |
239) |
Calculated using linear free energy relationships (LFERs). |
240) |
Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC). |
241) |
Calculated using COSMOtherm. |
242) |
Temperature is not specified. |
243) |
Value from the training dataset. |
244) |
Calculated using the GROMHE model. |
245) |
Calculated using the SPARC approach. |
246) |
Calculated using the HENRYWIN method. |
247) |
Calculated using a combination of a group contribution method and neural networks. |
249) |
Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here. |
250) |
Value from the training set. |
300) |
Value from the test set for true external validation. |
307) |
The data from Maaßen (1995) were fitted to the three-parameter equation: Hscp= exp( −187.57836 +9639.75245/T +25.50544 ln(T)) mol m−3 Pa−1, with T in K. |
308) |
The data from Reichl (1995) were fitted to the three-parameter equation: Hscp= exp( −166.44394 +8613.39266/T +22.39721 ln(T)) mol m−3 Pa−1, with T in K. |
309) |
The data from Morrison and Billett (1952) were fitted to the three-parameter equation: Hscp= exp( −175.14997 +9028.26949/T +23.67675 ln(T)) mol m−3 Pa−1, with T in K. |
310) |
The data from Dean and Lange (1999) were fitted to the three-parameter equation: Hscp= exp( −221.00286 +11107.47493/T +30.50401 ln(T)) mol m−3 Pa−1, with T in K. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|