MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsHydrocarbons (C, H)Alkanes → methane

FORMULA:CH4
CAS RN:74-82-8
STRUCTURE
(FROM NIST):
InChIKey:VNWKTOKETHGBQD-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
1.4×10−5 1600 Burkholder et al. (2019) L 1)
1.2×10−5 1100 Burkholder et al. (2019) L 71)
1.4×10−5 1600 Burkholder et al. (2015) L 1)
1.2×10−5 1100 Burkholder et al. (2015) L 71)
1.4×10−5 1900 Warneck and Williams (2012) L
1.4×10−5 1600 Sander et al. (2011) L 1)
1.4×10−5 1600 Sander et al. (2006) L 1)
1.4×10−5 1500 Fernández-Prini et al. (2003) L 3)
1.4×10−5 1600 Plyasunov and Shock (2000) L
1.4×10−5 1600 Abraham and Matteoli (1988) L
Clever and Young (1987) L 222)
1.5×10−5 Mackay and Shiu (1981) L
1.4×10−5 1700 Wilhelm et al. (1977) L
1.3×10−5 1500 Himmelblau (1960) L 1)
1.6×10−5 Liu et al. (2021) M
1.4×10−5 1800 Lutsyk et al. (2005) M
1.2×10−5 2400 Lekvam and Bishnoi (1997) M
1.3×10−5 1400 Reichl (1995) M 223)
1.4×10−5 1600 Scharlin and Battino (1995) M 224)
1.2×10−5 Guitart et al. (1989) M 14)
1.4×10−5 1800 Ben-Naim and Battino (1985) M
1.4×10−5 1600 Crovetto et al. (1982) M
1.4×10−5 1600 Rettich et al. (1981) M
1.4×10−5 1600 Cosgrove and Walkley (1981) M 11)
1.3×10−5 1700 Shoor et al. (1969) M 225)
1.5×10−5 McAuliffe (1966) M 226)
1.4×10−5 1600 Wetlaufer et al. (1964) M
1.5×10−5 McAuliffe (1963) M 227)
1.3×10−5 1600 Morrison and Billett (1952) M 228)
1.3×10−5 1700 Winkler (1901) M 229)
1.5×10−5 Duchowicz et al. (2020) V 187)
1.5×10−5 HSDB (2015) V
1.5×10−5 Meylan and Howard (1991) V
1.5×10−5 Hine and Mookerjee (1975) V
1.3×10−5 1600 Wauchope and Haque (1972) V
9.2×10−5 Butler and Ramchandani (1935) V
1.4×10−5 Hine and Weimar (1965) R
1.4×10−5 Pierotti (1965) T
9.6×10−6 Liss and Slater (1974) C
1.3×10−5 Deno and Berkheimer (1960) C
1.1×10−5 Hayer et al. (2022) Q 20)
3.4×10−3 Duchowicz et al. (2020) Q
7.0×10−7 Gharagheizi et al. (2012) Q
2.5×10−5 Hilal et al. (2008) Q
2300 Kühne et al. (2005) Q
3.0×10−5 Yao et al. (2002) Q 230)
3.0×10−5 English and Carroll (2001) Q 231) 232)
8.6×10−6 Katritzky et al. (1998) Q
1.6×10−5 Nirmalakhandan et al. (1997) Q
2.1×10−5 Suzuki et al. (1992) Q 233)
2.4×10−5 Meylan and Howard (1991) Q
1700 Kühne et al. (2005) ?
1.6×10−5 Yaws (1999) ? 21)
1.4×10−5 1600 Yaws et al. (1999) ? 21)
1.2×10−5 Abraham and Weathersby (1994) ? 21)
1.3×10−5 1700 Dean and Lange (1999) ? 23) 234)
1.5×10−5 Yaws and Yang (1992) ? 21)
1.4×10−5 Abraham et al. (1990) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H. & Matteoli, E.: The temperature variation of the hydrophobic effect, J. Chem. Soc. Faraday Trans. 1, 84, 1985–2000, doi:10.1039/F19888401985 (1988).
  • Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Ben-Naim, A. & Battino, R.: Solubilization of methane, ethane, propane and n-butane in aqueous solutions of sodium dodecylsulfate, J. Solution Chem., 14, 245–253, doi:10.1007/BF00644456 (1985).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Butler, J. A. V. & Ramchandani, C. N.: The solubility of non-electrolytes. Part II. The influence of the polar group on the free energy of hydration of aliphatic compounds, J. Chem. Soc., pp. 952–955, doi:10.1039/JR9350000952 (1935).
  • Clever, H. L. & Young, C. L.: IUPAC Solubility Data Series, Volume 27/28, Methane, Pergamon Press, Oxford, doi:10.1016/C2009-0-00752-1 (1987).
  • Cosgrove, B. A. & Walkley, J.: Solubilities of gases in H2O and 2H2O, J. Chromatogr., 216, 161–167, doi:10.1016/S0021-9673(00)82344-4 (1981).
  • Crovetto, R., Fernández-Prini, R., & Japas, M. L.: Solubilities of inert gases and methane in H2O and in D2O in the temperature range of 300 to 600 K, J. Chem. Phys., 76, 1077–1086, doi:10.1063/1.443074 (1982).
  • Dean, J. A. & Lange, N. A.: Lange’s Handbook of Chemistry, Fifteenth Edition, McGraw-Hill, Inc., ISBN 9780070163843 (1999).
  • Deno, N. C. & Berkheimer, H. E.: Activity coefficients as a functon of structure and media, J. Chem. Eng. Data, 5, 1–5, doi:10.1021/JE60005A001 (1960).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Fernández-Prini, R., Alvarez, J. L., & Harvey, A. H.: Henry’s constants and vapor-liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures, J. Phys. Chem. Ref. Data, 32, 903–916, doi:10.1063/1.1564818 (2003).
  • Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
  • Guitart, R., Puigdemont, F., & Arboix, M.: Rapid headspace gas chromatographic method for the determination of liquid/gas partition coefficients, J. Chromatogr., 491, 271–280, doi:10.1016/S0378-4347(00)82845-5 (1989).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Himmelblau, D. M.: Solubilities of inert gases in water. 0C. to near the critical point of water, J. Chem. Eng. Data, 5, 10–15, doi:10.1021/JE60005A003 (1960).
  • Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
  • Hine, J. & Weimar, Jr., R. D.: Carbon basicity, J. Am. Chem. Soc., 87, 3387–3396, doi:10.1021/JA01093A018 (1965).
  • HSDB: Hazardous Substances Data Bank, TOXicology data NETwork (TOXNET), National Library of Medicine (US), URL https://www.nlm.nih.gov/toxnet/Accessing_HSDB_Content_from_PubChem.html (2015).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Lekvam, K. & Bishnoi, P. R.: Dissolution of methane in water at low temperatures and intermediate pressures, Fluid Phase Equilib., 131, 297–309, doi:10.1016/S0378-3812(96)03229-3 (1997).
  • Liss, P. S. & Slater, P. G.: Flux of gases across the air-sea interface, Nature, 247, 181–184, doi:10.1038/247181A0 (1974).
  • Liu, G.-H., Wen, M.-M., Deng, L.-T., Cui, H.-N., Jia, Y.-Y., Cheng, S.-H., Cao, J., & Li, C.: The determination of Henry’s law constant of methane in test water by A.R.M/headspace, Acta Geosci. Sinica, 4, 565–571, doi:10.3975/CAGSB.2020.111202 (2021).
  • Lutsyk, A., Portnanskij, V., Sujkov, S., & Tchuprina, V.: A new set of gas/water partition coefficients for the chloromethanes, Monatsh. Chem. – Chem. Mon., 136, 1183–1189, doi:10.1007/S00706-005-0319-6 (2005).
  • Mackay, D. & Shiu, W. Y.: A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, doi:10.1063/1.555654 (1981).
  • McAuliffe, C.: Solubility in water of C1-C9 hydrocarbons, Nature, 200, 1092–1093, doi:10.1038/2001092A0 (1963).
  • McAuliffe, C.: Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin, and aromatic hydrocarbons, J. Phys. Chem., 70, 1267–1275, doi:10.1021/J100876A049 (1966).
  • Meylan, W. M. & Howard, P. H.: Bond contribution method for estimating Henry’s law constants, Environ. Toxicol. Chem., 10, 1283–1293, doi:10.1002/ETC.5620101007 (1991).
  • Morrison, T. J. & Billett, F.: 730. The salting-out of non-electrolytes. Part II. The effect of variation in non-electrolyte, J. Chem. Soc., pp. 3819–3822, doi:10.1039/JR9520003819 (1952).
  • Nirmalakhandan, N., Brennan, R. A., & Speece, R. E.: Predicting Henry’s law constant and the effect of temperature on Henry’s law constant, Wat. Res., 31, 1471–1481, doi:10.1016/S0043-1354(96)00395-8 (1997).
  • Pierotti, R. A.: Aqueous solutions of nonpolar gases, J. Phys. Chem., 69, 281–288, doi:10.1021/J100885A043 (1965).
  • Plyasunov, A. V. & Shock, E. L.: Thermodynamic functions of hydration of hydrocarbons at 298.15K and 0.1MPa, Geochim. Cosmochim. Acta, 64, 439–468, doi:10.1016/S0016-7037(99)00330-0 (2000).
  • Reichl, A.: Messung und Korrelierung von Gaslöslichkeiten halogenierter Kohlenwasserstoffe, Ph.D. thesis, Technische Universität Berlin, Germany (1995).
  • Rettich, T. R., Handa, Y. P., Battino, R., & Wilhelm, E.: Solubility of gases in liquids. 13. High-precision determination of Henry’s constants for methane and ethane in liquid water at 275 to 328 K, J. Phys. Chem., 85, 3230–3237, doi:10.1021/J150622A006 (1981).
  • Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
  • Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
  • Scharlin, P. & Battino, R.: Solubility of CCl2F2, CClF3, CF4, and CH4 in water and seawater at 288.15-303.15K and 101.325kPa, J. Chem. Eng. Data, 40, 167–169, doi:10.1021/JE00017A036 (1995).
  • Shoor, S. K., Walker, Jr., R. D., & Gubbins, K. E.: Salting out of nonpolar gases in aqueous potassium hydroxide solutions, J. Phys. Chem., 73, 312–317, doi:10.1021/J100722A006 (1969).
  • Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
  • Warneck, P. & Williams, J.: The Atmospheric Chemist’s Companion: Numerical Data for Use in the Atmospheric Sciences, Springer Verlag, doi:10.1007/978-94-007-2275-0 (2012).
  • Wauchope, R. D. & Haque, R.: Aqueous solutions of nonpolar compounds. Heat-capacity effects, Can. J. Chem., 50, 133–138, doi:10.1139/V72-022 (1972).
  • Wetlaufer, D. B., Malik, S. K., Stoller, L., & Coffin, R. L.: Nonpolar group participation in the denaturation of proteins by urea and guanidinium salts. Model compound studies, J. Am. Chem. Soc., 86, 508–514, doi:10.1021/JA01057A045 (1964).
  • Wilhelm, E., Battino, R., & Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, doi:10.1021/CR60306A003 (1977).
  • Winkler, L. W.: Die Löslichkeit der Gase in Wasser (dritte Abhandlung), Ber. Dtsch. Chem. Ges., 34, 1408–1422, doi:10.1002/CBER.19010340210 (1901).
  • Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
  • Yaws, C. L., Hopper, J. R., Wang, X., Rathinsamy, A. K., & Pike, R. W.: Calculating solubility & Henry’s law constants for gases in water, Chem. Eng., pp. 102–105 (1999).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
3) The vapor pressure for water from Wagner and Pruss (1993) was used to calculate Hs.
11) Measured at high temperature and extrapolated to T = 298.15 K.
14) Value at T = 310 K.
20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
23) The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by Buck (1981). The quantities A and α from Dean and Lange (1999) were assumed to be identical.
71) Solubility in sea water.
187) Estimation based on the quotient between vapor pressure and water solubility, extracted from HENRYWIN.
222) Clever and Young (1987) recommend the data from Rettich et al. (1981).
223) The data from Reichl (1995) were fitted to the three-parameter equation: Hscp= exp( −133.87728 +6629.97157/T +17.62624 ln(T)) mol m−3 Pa−1, with T in K.
224) The data from Scharlin and Battino (1995) were fitted to the three-parameter equation: Hscp= exp( −206.41168 +10058.77208/T +28.34417 ln(T)) mol m−3 Pa−1, with T in K.
225) The data from Shoor et al. (1969) were fitted to the three-parameter equation: Hscp= exp( −201.05778 +9920.37989/T +27.48020 ln(T)) mol m−3 Pa−1, with T in K.
226) The same value was also published in McAuliffe (1963).
227) The same value was also published in McAuliffe (1966).
228) The data from Morrison and Billett (1952) were fitted to the three-parameter equation: Hscp= exp( −195.92072 +9624.37184/T +26.74976 ln(T)) mol m−3 Pa−1, with T in K.
229) The data from Winkler (1901) were fitted to the three-parameter equation: Hscp= exp( −203.15902 +9951.75251/T +27.82679 ln(T)) mol m−3 Pa−1, with T in K.
230) Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
232) Value from the training dataset.
233) Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details.
234) The data from Dean and Lange (1999) were fitted to the three-parameter equation: Hscp= exp( −185.72813 +9197.97387/T +25.21142 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *