When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | C14H8Cl4 |
TRIVIAL NAME:
|
p,p'-DDE
|
CAS RN: | 72-55-9 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | UCNVFOCBFJOQAL-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
2.4×10−1 |
|
Shen and Wania (2005) |
L |
368)
|
2.4×10−1 |
|
Shen and Wania (2005) |
L |
369)
|
2.9×10−2 |
4700 |
Jantunen and Bidleman (2006) |
M |
|
1.6×10−1 |
7700 |
Cetin et al. (2006) |
M |
|
2.4×10−1 |
|
Altschuh et al. (1999) |
M |
|
8.1×10−3 |
|
Atlas et al. (1982) |
M |
681)
|
|
|
Mackay et al. (2006d) |
V |
560)
|
2.9×10−2 |
|
Ballschmiter and Wittlinger (1991) |
V |
|
1.6×10−1 |
|
Calamari et al. (1991) |
V |
12)
|
7.6×10−1 |
|
McLachlan et al. (1990) |
V |
375)
|
1.3×10−1 |
|
Suntio et al. (1988) |
V |
12)
|
5.1×10−2 |
|
Yoshida et al. (1983) |
V |
|
1.2×10−1 |
|
Addison et al. (1983) |
V |
|
2.6×10−2 |
7600 |
Paasivirta et al. (1999) |
T |
|
4.5×10−1 |
|
Suntio et al. (1988) |
C |
683)
|
4.5×10−1 |
|
Ryan et al. (1988) |
C |
|
8.1×10−2 |
|
Keshavarz et al. (2022) |
Q |
|
4.2×10−2 |
|
Duchowicz et al. (2020) |
Q |
|
1.8×10−1 |
|
Hilal et al. (2008) |
Q |
|
2.1×10−1 |
|
Modarresi et al. (2007) |
Q |
68)
|
2.4×10−1 |
|
Duchowicz et al. (2020) |
? |
21)
186)
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Addison, R. F., Paterson, S., & Mackay, D.: The predicted environmental distribution of some PCB replacements, Chemosphere, 12, 827–834, doi:10.1016/0045-6535(83)90148-0 (1983).
-
Altschuh, J., Brüggemann, R., Santl, H., Eichinger, G., & Piringer, O. G.: Henry’s law constants for a diverse set of organic chemicals: Experimental determination and comparison of estimation methods, Chemosphere, 39, 1871–1887, doi:10.1016/S0045-6535(99)00082-X (1999).
-
Atlas, E., Foster, R., & Giam, C. S.: Air-sea exchange of high-molecular weight organic pollutants: laboratory studies, Environ. Sci. Technol., 16, 283–286, doi:10.1021/ES00099A010 (1982).
-
Ballschmiter, K. & Wittlinger, R.: Interhemisphere exchange of hexachlorocyclohexanes, hexachlorobenzene, polychlorobiphenyls, and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane in the lower troposphere, Environ. Sci. Technol., 25, 1103–1111, doi:10.1021/ES00018A014 (1991).
-
Calamari, D., Bacci, E., Focardi, S., Gaggi, C., Morosini, M., & Vighi, M.: Role of plant biomass in the global environmental partitioning of chlorinated hydrocarbons, Environ. Sci. Technol., 25, 1489–1495, doi:10.1021/ES00020A020 (1991).
-
Cetin, B., Ozer, S., Sofuoglu, A., & Odabasi, M.: Determination of Henry’s law constants of organochlorine pesticides in deionized and saline water as a function of temperature, Atmos. Environ., 40, 4538–4546, doi:10.1016/J.ATMOSENV.2006.04.009 (2006).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Jantunen, L. M. & Bidleman, T. F.: Henry’s law constants for hexachlorobenzene, p,p’-DDE and components of technical chlordane and estimates of gas exchange for Lake Ontario, Chemosphere, 62, 1689–1696, doi:10.1016/J.CHEMOSPHERE.2005.06.035 (2006).
-
Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
-
Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Nitrogen and Sulfur Containing Compounds and Pesticides, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006d).
-
McLachlan, M., Mackay, D., & Jones, P. H.: A conceptual model of organic chemical volatilization at waterfalls, Environ. Sci. Technol., 24, 252–257, doi:10.1021/ES00072A015 (1990).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Paasivirta, J., Sinkkonen, S., Mikkelson, P., Rantio, T., & Wania, F.: Estimation of vapor pressures, solubilities and Henry’s law constants of selected persistent organic pollutants as functions of temperature, Chemosphere, 39, 811–832, doi:10.1016/S0045-6535(99)00016-8 (1999).
-
Ryan, J. A., Bell, R. M., Davidson, J. M., & O’Connor, G. A.: Plant uptake of non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323, doi:10.1016/0045-6535(88)90142-7 (1988).
-
Shen, L. & Wania, F.: Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides, J. Chem. Eng. Data, 50, 742–768, doi:10.1021/JE049693F (2005).
-
Suntio, L. R., Shiu, W. Y., Mackay, D., Seiber, J. N., & Glotfelty, D.: Critical review of Henry’s law constants for pesticides, Rev. Environ. Contam. Toxicol., 103, 1–59, doi:10.1007/978-1-4612-3850-8_1 (1988).
-
Yoshida, K., Shigeoka, T., & Yamauchi, F.: Non-steady state equilibrium model for the preliminary prediction of the fate of chemicals in the environment, Ecotoxicol. Environ. Saf., 7, 179–190, doi:10.1016/0147-6513(83)90064-7 (1983).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
12) |
Value at T = 293 K. |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
186) |
Experimental value, extracted from HENRYWIN. |
368) |
Literature-derived value. |
369) |
Final adjusted value. |
375) |
Value at T = 283 K. |
560) |
Mackay et al. (2006d) list a vapor pressure p, a solubility c, and a Henry's law constant calculated as p/c. However, the data are internally inconsistent and deviate by more than 10 %. |
681) |
As explained by Miller and Stuart (2003), the measurements were performed at 296 K. |
683) |
Value for T = 293... 298 K. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|