When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | C12H7Cl3 |
TRIVIAL NAME:
|
PCB-28
|
CAS RN: | 7012-37-5 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | BZTYNSQSZHARAZ-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
3.0×10−2 |
6300 |
Li et al. (2003) |
L |
368)
|
3.3×10−2 |
6600 |
Li et al. (2003) |
L |
369)
|
5.9×10−3 |
|
Bhangare et al. (2019) |
M |
727)
|
5.0×10−2 |
|
Bhangare et al. (2019) |
M |
728)
|
2.3×10−2 |
|
Lau et al. (2006) |
M |
721)
|
1.4×10−2 |
|
Lau et al. (2006) |
M |
722)
|
1.8×10−2 |
2300 |
Charles and Destaillats (2005) |
M |
33)
|
2.6×10−2 |
3900 |
Bamford et al. (2000) |
M |
|
3.6×10−2 |
6100 |
ten Hulscher et al. (1992) |
M |
|
4.9×10−2 |
|
Brunner et al. (1990) |
M |
|
3.1×10−2 |
|
Dunnivant and Elzerman (1988) |
M |
|
3.7×10−2 |
|
Murphy et al. (1987) |
M |
12)
|
6.9×10−2 |
|
Brownawell (1986) |
M |
295)
|
2.7×10−2 |
5900 |
Paasivirta and Sinkkonen (2009) |
V |
|
4.4×10−2 |
|
Burkhard et al. (1985) |
V |
|
2.7×10−2 |
7100 |
Paasivirta et al. (1999) |
T |
|
4.5×10−2 |
|
Keshavarz et al. (2022) |
Q |
|
6.0×10−2 |
|
Duchowicz et al. (2020) |
Q |
|
1.0×10−1 |
|
Hilal et al. (2008) |
Q |
|
9.9×10−2 |
|
Modarresi et al. (2007) |
Q |
68)
|
2.2×10−2 |
|
Lee (2007) |
Q |
723)
|
4.7×10−2 |
|
Lee (2007) |
Q |
724)
|
|
4800 |
Kühne et al. (2005) |
Q |
|
5.2×10−2 |
|
Yaffe et al. (2003) |
Q |
249)
250)
|
3.5×10−2 |
|
Dunnivant et al. (1992) |
Q |
|
4.9×10−2 |
|
Duchowicz et al. (2020) |
? |
21)
186)
|
|
4800 |
Kühne et al. (2005) |
? |
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Bamford, H. A., Poster, D. L., & Baker, J. E.: Henry’s law constants of polychlorinated biphenyl congeners and their variation with temperature, J. Chem. Eng. Data, 45, 1069–1074, doi:10.1021/JE0000266 (2000).
-
Bhangare, R. C., Ajmal, P. Y., Rathod, T. D., Tiwari, M., & Sahu, S. K.: Experimental and theoretical determination of Henry’s law constant for polychlorinated biphenyls: its dependence on solubility and degree of chlorination, Arch. Environ. Contam. Toxicol., 76, 142–152, doi:10.1007/S00244-018-0577-Z (2019).
-
Brownawell, B. J.: The role of colloidal organic matter in the marine geochemistry of PCBs, Ph.D. thesis, Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution, doi:10.1575/1912/3932 (1986).
-
Brunner, S., Hornung, E., Santl, H., Wolff, E., Piringer, O. G., Altschuh, J., & Brüggemann, R.: Henry’s law constants for polychlorinated biphenyls: Experimental determination and structure-property relationships, Environ. Sci. Technol., 24, 1751–1754, doi:10.1021/ES00081A021 (1990).
-
Burkhard, L. P., Armstrong, D. E., & Andren, A. W.: Henry’s law constants for the polychlorinated biphenyls, Environ. Sci. Technol., 19, 590–596, doi:10.1021/ES00137A002 (1985).
-
Charles, M. J. & Destaillats, H.: Experimental determinations of Henry’s law constants of polybrominated diphenyl ethers (PBDEs) to evaluate exposure to aquatic biota, technical completion report, University of California Water Resources Center, UC Berkeley, URL https://escholarship.org/uc/item/9zv0s4np (2005).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
Dunnivant, F. M. & Elzerman, A. W.: Aqueous solubility and Henry’s law constant data for PCB congeners for evaluation of quantitative structure-property relationships (QSPRs), Chemosphere, 17, 525–541, doi:10.1016/0045-6535(88)90028-8 (1988).
-
Dunnivant, F. M., Elzerman, A. W., Jurs, P. C., & Hasan, M. N.: Quantitative structure-property relationships for aqueous solubilities and Henry’s law constants of polychlorinated biphenyls, Environ. Sci. Technol., 26, 1567–1573, doi:10.1021/ES00032A012 (1992).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Lau, F. K., Charles, M. J., & Cahill, T. M.: Evaluation of gas-stripping methods for the determination of Henry’s law constants for polybrominated diphenyl ethers and polychlorinated biphenyls, J. Chem. Eng. Data, 51, 871–878, doi:10.1021/JE050308B (2006).
-
Lee, F. F.: Comprehensive analysis, Henry’s law constant determination, and photocatalytic degradation of polychlorinated biphenyls (PCBs) and/or other persistent organic pollutants (POPs), Ph.D. thesis, University at Albany, State University of New York, USA, ISBN 978-0-549-42141-2 (2007).
-
Li, N., Wania, F., Lei, Y. D., & Daly, G. L.: A comprehensive and critical compilation, evaluation, and selection of physical-chemical property data for selected polychlorinated biphenyls, J. Phys. Chem. Ref. Data, 32, 1545–1590, doi:10.1063/1.1562632 (2003).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Murphy, T. J., Mullin, M. D., & Meyer, J. A.: Equilibration of polychlorinated biphenyls and toxaphene with air and water, Environ. Sci. Technol., 21, 155–162, doi:10.1021/ES00156A005 (1987).
-
Paasivirta, J. & Sinkkonen, S. I.: Environmentally relevant properties of all 209 polychlorinated biphenyl congeners for modeling their fate in different natural and climatic conditions, J. Chem. Eng. Data, 54, 1189–1213, doi:10.1021/JE800501H (2009).
-
Paasivirta, J., Sinkkonen, S., Mikkelson, P., Rantio, T., & Wania, F.: Estimation of vapor pressures, solubilities and Henry’s law constants of selected persistent organic pollutants as functions of temperature, Chemosphere, 39, 811–832, doi:10.1016/S0045-6535(99)00016-8 (1999).
-
ten Hulscher, T. E. M., van der Velde, L. E., & Bruggeman, W. A.: Temperature dependence of Henry’s law constants for selected chlorobenzenes, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, Environ. Toxicol. Chem., 11, 1595–1603, doi:10.1002/ETC.5620111109 (1992).
-
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
12) |
Value at T = 293 K. |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
33) |
Fitting the temperature dependence dlnH/d(1/T) produced a low correlation coefficient (r2 < 0.9). The data should be treated with caution. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
186) |
Experimental value, extracted from HENRYWIN. |
249) |
Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here. |
250) |
Value from the training set. |
295) |
Value at T = 294 K. |
368) |
Literature-derived value. |
369) |
Final adjusted value. |
721) |
Modified gas-stripping method (MGSM); see Lau et al. (2006) for details. |
722) |
Integrated gas-stripping method (IGSM); see Lau et al. (2006) for details. |
723) |
Calculated with the principal component regression (PCR) method; see Lee (2007) for details. |
724) |
Calculated with the partial least-square regression (PLSR) method; see Lee (2007) for details. |
727) |
Calculated using the EPICS method. |
728) |
Calculated using the "Direct" method. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|