MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Ketones (RCOR) → propanone

FORMULA:CH3COCH3
TRIVIAL NAME: acetone
CAS RN:67-64-1
STRUCTURE
(FROM NIST):
InChIKey:CSCPPACGZOOCGX-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
2.7×10−1 5500 Burkholder et al. (2019) L
2.7×10−1 5500 Burkholder et al. (2015) L
2.9×10−1 5300 Brockbank (2013) L 1) 478)
2.7×10−1 5500 Sander et al. (2011) L
3.3×10−1 5300 Poulain et al. (2010) L
2.8×10−1 5100 Sander et al. (2006) L
2.6×10−1 5700 Fogg and Sangster (2003) L
2.8×10−1 4800 Staudinger and Roberts (2001) L
2.7×10−1 5000 Plyasunov and Shock (2001) L
3.0×10−1 4600 Staudinger and Roberts (1996) L
2.9×10−1 5100 Poulain et al. (2010) M
3.3×10−1 4500 O’Farrell and Waghorne (2010) M
2.6×10−1 5400 Ji and Evans (2007) M
2.4×10−1 4200 Falabella et al. (2006) M 11) 340)
2.6×10−1 6400 Strekowski and George (2005) M
2.4×10−1 Straver and de Loos (2005) M
2.4×10−1 4300 Chai et al. (2005) M 11)
2.7×10−1 Nozière and Riemer (2003) M 80)
1.0×10−1 Ayuttaya et al. (2001) M 342)
9.4×10−4 Ayuttaya et al. (2001) M 343)
5.3×10−1 Ayuttaya et al. (2001) M 344)
9.6×10−2 Welke et al. (1998) M
2.7×10−1 5300 Benkelberg et al. (1995) M
2.7×10−1 Hoff et al. (1993) M
1.7×10−1 Yu (1992) M 12)
3.2×10−1 5800 Betterton (1991) M
3.5×10−1 3800 Zhou and Mopper (1990) M 458)
1.2×10−1 Guitart et al. (1989) M 14)
1.4×10−1 Hellmann (1987) M 88)
2.5×10−1 4800 Snider and Dawson (1985) M
3.2×10−1 5400 Schoene and Steinhanses (1985) M
1.9×10−1 Richon et al. (1985) M 38)
2.6×10−1 5100 Lichtenbelt and Schram (1985) M 479)
2.0×10−1 7800 Ioffe et al. (1984) M
1.5×10−1 Sato and Nakajima (1979a) M 14)
2.5×10−1 Vitenberg et al. (1975) M
2.5×10−1 Vitenberg et al. (1974) M
3.2×10−1 Vitenberg et al. (1974) M
2.5×10−1 Buttery et al. (1969) M
3.1×10−1 Nelson and Hoff (1968) M 298)
2.8×10−1 Burnett (1963) M
1.8×10−2 Abraham and Acree (2007) V
2.6×10−1 Hwang et al. (1992) V
3.1×10−2 3100 Djerki and Laub (1988) V
2.4×10−1 Rathbun and Tai (1982) V
3.1×10−2 Hine and Weimar (1965) R
3.0×10−1 Butler and Ramchandani (1935) R
2.5×10−1 4900 Bagno et al. (1991) T 475)
2.1×10−1 Yaws (2003) X 259)
2.2×10−1 5000 Schaffer and Daubert (1969) X 299)
3.0×10−2 3300 Janini and Quaddora (1986) X 299)
3.0×10−1 Gaffney and Senum (1984) X 391)
2.7×10−1 Cabani et al. (1981) C
6.1×10−1 Dupeux et al. (2022) Q 260)
2.6×10−1 Hayer et al. (2022) Q 20)
1.2×10−1 Keshavarz et al. (2022) Q
3.2×10−2 Duchowicz et al. (2020) Q
6.6×10−2 Wang et al. (2017) Q 81) 239)
4.3×10−1 Wang et al. (2017) Q 81) 240)
7.1×10−1 Wang et al. (2017) Q 81) 241)
2.5×10−1 Li et al. (2014) Q 242)
2.5×10−1 Raventos-Duran et al. (2010) Q 244) 272)
2.0×10−1 Raventos-Duran et al. (2010) Q 245)
2.0×10−1 Raventos-Duran et al. (2010) Q 246)
1.4×10−1 Hilal et al. (2008) Q
4.0×10−1 Modarresi et al. (2007) Q 68)
5500 Kühne et al. (2005) Q
2.5×10−1 Yaffe et al. (2003) Q 249) 250)
2.5×10−1 English and Carroll (2001) Q 231) 232)
2.4×10−2 Katritzky et al. (1998) Q
2.1×10−1 Nirmalakhandan et al. (1997) Q
1.9×10−1 Suzuki et al. (1992) Q 233)
2.5×10−1 Taft et al. (1985) Q
2.8×10−1 Duchowicz et al. (2020) ? 21) 186)
2.5×10−1 Mackay et al. (2006c) ? 21)
5100 Kühne et al. (2005) ?
1.5×10−1 Yaws (1999) ? 21)
1.8×10−1 Yaws et al. (1998) ?
1.6×10−1 Abraham and Weathersby (1994) ? 21)
2.3×10−1 Yaws and Yang (1992) ? 21)
2.5×10−1 Abraham et al. (1990) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H. & Acree, Jr., W. E.: Prediction of gas to water partition coefficients from 273 to 373 K using predicted enthalpies and heat capacities of hydration, Fluid Phase Equilib., 262, 97–110, doi:10.1016/J.FLUID.2007.08.011 (2007).
  • Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Ayuttaya, P. C. N., Rogers, T. N., Mullins, M. E., & Kline, A. A.: Henry’s law constants derived from equilibrium static cell measurements for dilute organic-water mixtures, Fluid Phase Equilib., 185, 359–377, doi:10.1016/S0378-3812(01)00484-8 (2001).
  • Bagno, A., Lucchini, V., & Scorrano, G.: Thermodynamics of protonation of ketones and esters and energies of hydration of their conjugate acids, J. Phys. Chem., 95, 345–352, doi:10.1021/J100154A063 (1991).
  • Benkelberg, H.-J., Hamm, S., & Warneck, P.: Henry’s law coefficients for aqueous solutions of acetone, acetaldehyde and acetonitrile, and equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite, J. Atmos. Chem., 20, 17–34, doi:10.1007/BF01099916 (1995).
  • Betterton, E. A.: The partitioning of ketones between the gas and aqueous phases, Atmos. Environ., 25A, 1473–1477, doi:10.1016/0960-1686(91)90006-S (1991).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Burnett, M. G.: Determination of partition coefficients at infinite dilution by the gas chromatographic analysis of the vapor above dilute solutions, Anal. Chem., 35, 1567–1570, doi:10.1021/AC60204A007 (1963).
  • Butler, J. A. V. & Ramchandani, C. N.: The solubility of non-electrolytes. Part II. The influence of the polar group on the free energy of hydration of aliphatic compounds, J. Chem. Soc., pp. 952–955, doi:10.1039/JR9350000952 (1935).
  • Buttery, R. G., Ling, L. C., & Guadagni, D. G.: Volatilities of aldehydes, ketones, and esters in dilute water solutions, J. Agric. Food Chem., 17, 385–389, doi:10.1021/JF60162A025 (1969).
  • Cabani, S., Gianni, P., Mollica, V., & Lepori, L.: Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution, J. Solution Chem., 10, 563–595, doi:10.1007/BF00646936 (1981).
  • Chai, X.-S., Falabella, J. B., & Teja, A. S.: A relative headspace method for Henry’s constants of volatile organic compounds, Fluid Phase Equilib., 231, 239–245, doi:10.1016/J.FLUID.2005.02.006 (2005).
  • Djerki, R. A. & Laub, R. J.: Solute retention in column liquid chromatography. X. Determination of solute infinite-dilution activity coefficients in methanol, water, and their mixtures, by combined gas-liquid and liquid-liquid chromatography, J. Liq. Chromatogr., 11, 585–612, doi:10.1080/01483918808068333 (1988).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Falabella, J. B., Nair, A., & Teja, A. S.: Henry’s constants of 1-alkanols and 2-ketones in salt solutions, J. Chem. Eng. Data, 51, 1940–1945, doi:10.1021/JE0600956 (2006).
  • Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
  • Gaffney, J. S. & Senum, G. I.: Peroxides, peracids, aldehydes, and PANs and their links to natural and anthropogenic organic sources, in: Gas-Liquid Chemistry of Natural Waters, edited by Newman, L., pp. 5–1–5–7, NTIS TIC-4500, UC-11, BNL 51757 Brookhaven National Laboratory (1984).
  • Guitart, R., Puigdemont, F., & Arboix, M.: Rapid headspace gas chromatographic method for the determination of liquid/gas partition coefficients, J. Chromatogr., 491, 271–280, doi:10.1016/S0378-4347(00)82845-5 (1989).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Hellmann, H.: Model tests on volatilization of organic trace substances in surfaces waters, Fresenius J. Anal. Chem., 328, 475–479, doi:10.1007/BF00475967 (1987).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hine, J. & Weimar, Jr., R. D.: Carbon basicity, J. Am. Chem. Soc., 87, 3387–3396, doi:10.1021/JA01093A018 (1965).
  • Hoff, J. T., Mackay, D., Gillham, R., & Shiu, W. Y.: Partitioning of organic chemicals at the air–water interface in environmental systems, Environ. Sci. Technol., 27, 2174–2180, doi:10.1021/ES00047A026 (1993).
  • Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
  • Ioffe, B. V., Kostkina, M. I., & Vitenberg, A. G.: Preparation of standard vapor-gas mixtures for gas chromatography: discontinuous gas extraction, Anal. Chem., 56, 2500–2503, doi:10.1021/AC00277A053 (1984).
  • Janini, G. M. & Quaddora, L. A.: Determination of activity coefficients of oxygenated hydrocarbons by liquid-liquid chromatography, J. Liq. Chromatogr., 9, 39–53, doi:10.1080/01483918608076621 (1986).
  • Ji, C. & Evans, E. M.: Using an internal standard method to determine Henry’s law constants, Environ. Toxicol. Chem., 26, 231–236, doi:10.1897/06-339R.1 (2007).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Lichtenbelt, J. H. & Schram, B. J.: Vapor-liquid equilibrium of water-acetone-air at ambient temperatures and pressures. An analysis of different VLE-fitting methods, Ind. Eng. Chem. Process Des. Dev., 24, 391–397, doi:10.1021/I200029A029 (1985).
  • Li, H., Wang, X., Yi, T., Xu, Z., & Liu, X.: Prediction of Henry’s law constants for organic compounds using multilayer feedforward neural networks based on linear salvation energy relationship, J. Chem. Pharm. Res., 6, 1557–1564 (2014).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Oxygen Containing Compounds, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006c).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nelson, P. E. & Hoff, J. E.: Food volatiles: Gas chromatographic determination of partition coefficients in water-lipid systems, Int. J. Mass Spectrom., 228, 479–482, doi:10.1111/J.1365-2621.1968.TB03659.X (1968).
  • Nirmalakhandan, N., Brennan, R. A., & Speece, R. E.: Predicting Henry’s law constant and the effect of temperature on Henry’s law constant, Wat. Res., 31, 1471–1481, doi:10.1016/S0043-1354(96)00395-8 (1997).
  • Nozière, B. & Riemer, D. D.: The chemical processing of gas-phase carbonyl compounds by sulfuric acid aerosols: 2,4-pentanedione, Atmos. Environ., 37, 841–851, doi:10.1016/S1352-2310(02)00934-2 (2003).
  • O’Farrell, C. E. & Waghorne, W. E.: Henry’s law constants of organic compounds in water and n-octane at T = 293.2K, J. Chem. Eng. Data, 55, 1655–1658, doi:10.1021/JE900711H (2010).
  • Plyasunov, A. V. & Shock, E. L.: Group contribution values of the infinite dilution thermodynamic functions of hydration for aliphatic noncyclic hydrocarbons, alcohols, and ketones at 298.15 K and 0.1 MPa, J. Chem. Eng. Data, 46, 1016–1019, doi:10.1021/JE0002282 (2001).
  • Poulain, L., Katrib, Y., Isikli, E., Liu, Y., Wortham, H., Mirabel, P., Le Calvé, S., & Monod, A.: In-cloud multiphase behaviour of acetone in the troposphere: Gas uptake, Henry’s law equilibrium and aqueous phase photooxidation, Chemosphere, 81, 312–320, doi:10.1016/J.CHEMOSPHERE.2010.07.032 (2010).
  • Rathbun, R. E. & Tai, D. Y.: Volatilization of ketones from water, Water Air Soil Pollut., 17, 281–293, doi:10.1007/BF00283158 (1982).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Richon, D., Sorrentino, F., & Voilley, A.: Infinite dilution activity coefficients by the inert gas stripping method: extension to the study of viscous and foaming mixtures, Ind. Eng. Chem. Process Des. Dev., 24, 1160–1165, doi:10.1021/I200031A044 (1985).
  • Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
  • Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
  • Sato, A. & Nakajima, T.: Partition coefficients of some aromatic hydrocarbons and ketones in water, blood and oil, Br. J. Ind. Med., 36, 231–234, doi:10.1136/OEM.36.3.231 (1979a).
  • Schaffer, D. L. & Daubert, T. E.: Gas-liquid chromatographic determination of solution properties of oxygenated compounds in water, Anal. Chem., 41, 1585–1589, doi:10.1021/AC60281A016 (1969).
  • Schoene, K. & Steinhanses, J.: Determination of Henry’s law constant by automated head space-gas chromatography, Fresenius J. Anal. Chem., 321, 538–543, doi:10.1007/BF00464360 (1985).
  • Snider, J. R. & Dawson, G. A.: Tropospheric light alcohols, carbonyls, and acetonitrile: Concentrations in the southwestern United States and Henry’s law data, J. Geophys. Res., 90, 3797–3805, doi:10.1029/JD090ID02P03797 (1985).
  • Staudinger, J. & Roberts, P. V.: A critical review of Henry’s law constants for environmental applications, Crit. Rev. Environ. Sci. Technol., 26, 205–297, doi:10.1080/10643389609388492 (1996).
  • Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
  • Straver, E. J. M. & de Loos, T. W.: Determination of Henry’s law constants and activity coefficients at infinite dilution of flavor compounds in water at 298 K with a gas-chromatographic method, J. Chem. Eng. Data, 50, 1171–1176, doi:10.1021/JE0495942 (2005).
  • Strekowski, R. S. & George, C.: Measurement of Henry’s law constants for acetone, 2-butanone, 2,3-butanedione and isobutyraldehyde using a horizontal flow reactor, J. Chem. Eng. Data, 50, 804–810, doi:10.1021/JE034137R (2005).
  • Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
  • Taft, R. W., Abraham, M. H., Doherty, R. M., & Kamlet, M. J.: The molecular properties governing solubilities of organic nonelectrolytes in water, Nature, 313, 384–386, doi:10.1038/313384A0 (1985).
  • Vitenberg, A. G., Ioffe, B. V., & Borisov, V. N.: Application of phase equilibria to gas chromatographic trace analysis, Chromatographia, 7, 610–619, doi:10.1007/BF02269053 (1974).
  • Vitenberg, A. G., Ioffe, B. V., Dimitrova, Z. S., & Butaeva, I. L.: Determination of gas-liquid partition coefficients by means of gas chromatographic analysis, J. Chromatogr., 112, 319–327, doi:10.1016/S0021-9673(00)99964-3 (1975).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Welke, B., Ettlinger, K., & Riederer, M.: Sorption of volatile organic chemicals in plant surfaces, Environ. Sci. Technol., 32, 1099–1104, doi:10.1021/ES970763V (1998).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
  • Yaws, C. L., Sheth, S. D., & Han, M.: Using solubility and Henry’s law constant data for ketones in water, Pollut. Eng., 30, 44–46 (1998).
  • Yu, H.-Z.: The use of Henry’s law constants in the determination of factors that influence VOC concentration in aqueous and gaseous phases in wastewater treatment plant, Master’s thesis, New Jersey Institute of Technology, USA (1992).
  • Zhou, X. & Mopper, K.: Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; Implications for air-sea exchange, Environ. Sci. Technol., 24, 1864–1869, doi:10.1021/ES00082A013 (1990).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
11) Measured at high temperature and extrapolated to T = 298.15 K.
12) Value at T = 293 K.
14) Value at T = 310 K.
20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
38) Value at T = 303 K.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
80) Value at T = 297 K.
81) Value at T = 288 K.
88) Value at T = 295 K.
186) Experimental value, extracted from HENRYWIN.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
232) Value from the training dataset.
233) Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details.
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
242) Temperature is not specified.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
259) Value given here as quoted by Dupeux et al. (2022).
260) Calculated using the COSMO-RS method.
272) Value from the validation dataset.
298) Value at T = 301 K.
299) Value given here as quoted by Staudinger and Roberts (1996).
340) Values for salt solutions are also available from this reference.
342) Value obtained by applying the EPICS method; see Ayuttaya et al. (2001) for details.
343) Value obtained by applying the static cell (linear form) method; see Ayuttaya et al. (2001) for details.
344) Value obtained by applying the direct phase concentration ratio method; see Ayuttaya et al. (2001) for details.
391) Value given here as quoted by Gaffney et al. (1987).
458) Data from Table 1 by Zhou and Mopper (1990) were used to redo the regression analysis. The data for acetone in their Table 2 are incorrect.
475) Calculated under the assumption that ∆G and ∆H are based on [mol L−1] and [atm] as the standard states.
478) Values at 298 K in Tables C2 and C5 of Brockbank (2013) are inconsistent, with 5 % difference.
479) Calculated from the slope of yacP vs xac, using data from Table VIII in Lichtenbelt and Schram (1985).

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *