When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
4.3×10−5 |
|
Brockbank (2013) |
L |
|
4.3×10−5 |
|
Duchowicz et al. (2020) |
V |
187)
|
4.2×10−5 |
|
Hine and Mookerjee (1975) |
V |
|
4.3×10−5 |
|
Yaws (2003) |
X |
238)
|
5.2×10−4 |
|
Duchowicz et al. (2020) |
Q |
|
2.6×10−4 |
|
Wang et al. (2017) |
Q |
81)
239)
315)
|
3.7×10−5 |
|
Wang et al. (2017) |
Q |
81)
240)
315)
|
5.9×10−5 |
|
Wang et al. (2017) |
Q |
81)
241)
315)
|
3.1×10−5 |
|
HSDB (2015) |
Q |
100)
|
2.6×10−5 |
|
Gharagheizi et al. (2012) |
Q |
|
3.6×10−5 |
|
Gharagheizi et al. (2010) |
Q |
247)
|
1.0×10−5 |
|
Modarresi et al. (2005) |
Q |
248)
|
6.7×10−5 |
|
Yao et al. (2002) |
Q |
230)
|
3.6×10−5 |
|
English and Carroll (2001) |
Q |
231)
232)
|
4.0×10−5 |
|
Suzuki et al. (1992) |
Q |
233)
|
2.7×10−5 |
|
Nirmalakhandan and Speece (1988) |
Q |
|
4.3×10−5 |
|
Yaws (1999) |
? |
21)
|
4.3×10−5 |
|
Yaws and Yang (1992) |
? |
21)
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
-
Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
-
Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
-
Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
-
HSDB: Hazardous Substances Data Bank, TOXicology data NETwork (TOXNET), National Library of Medicine (US), URL https://www.nlm.nih.gov/toxnet/Accessing_HSDB_Content_from_PubChem.html (2015).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: Henry’s law constant of hydrocarbons in air–water system: The cavity ovality effect on the non-electrostatic contribution term of solvation free energy, SAR QSAR Environ. Res., 16, 461–482, doi:10.1080/10659360500319869 (2005).
-
Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
-
Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
-
Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
-
Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
-
Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
81) |
Value at T = 288 K. |
100) |
Calculated based on the method by Meylan and Howard (1991). |
187) |
Estimation based on the quotient between vapor pressure and water solubility, extracted from HENRYWIN. |
230) |
Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm. |
231) |
English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown. |
232) |
Value from the training dataset. |
233) |
Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details. |
238) |
Value given here as quoted by Gharagheizi et al. (2010). |
239) |
Calculated using linear free energy relationships (LFERs). |
240) |
Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC). |
241) |
Calculated using COSMOtherm. |
247) |
Calculated using a combination of a group contribution method and neural networks. |
248) |
Modarresi et al. (2005) use different descriptors for the QSPR models. They conclude that their "COSA" method and the artificial neural network (ANN) are best. However, as COSA is not ideal for hydrocarbons with low solubility, only results obtained with ANN are shown here. |
315) |
Wang et al. (2017) provide separate data for cis and trans. However, since both isomers are identified by the same SMILES string in their study, it is unclear how the stereochemistry has been taken into account. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|