When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | CH3COOH |
TRIVIAL NAME:
|
acetic acid
|
CAS RN: | 64-19-7 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | QTBSBXVTEAMEQO-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
4.0×101 |
6200 |
Burkholder et al. (2019) |
L |
|
4.0×101 |
6200 |
Burkholder et al. (2015) |
L |
|
4.0×101 |
6200 |
Sander et al. (2011) |
L |
|
4.0×101 |
6200 |
Sander et al. (2006) |
L |
|
4.6×101 |
6300 |
Staudinger and Roberts (2001) |
L |
|
1.4×101 |
|
von Hartungen et al. (2004) |
M |
|
4.0×101 |
6300 |
Johnson et al. (1996) |
M |
|
5.4×101 |
|
Khan et al. (1995) |
M |
|
5.4×101 |
8300 |
Khan and Brimblecombe (1992) |
M |
|
9.2×101 |
|
Servant et al. (1991) |
M |
489)
|
|
|
Fredenhagen and Liebster (1932) |
M |
330)
|
9.1 |
|
Hwang et al. (1992) |
V |
|
|
6300 |
Abraham (1984) |
V |
|
|
6200 |
Abraham (1984) |
R |
490)
|
4.8×101 |
6400 |
Plyasunov et al. (2001) |
T |
|
8.7×101 |
6400 |
Jacob et al. (1989) |
T |
|
|
6400 |
Winiwarter et al. (1988) |
T |
491)
|
8.7×101 |
|
Keene and Galloway (1986) |
T |
|
9.7 |
4900 |
Goldstein (1982) |
X |
299)
|
9.9×101 |
|
Gaffney and Senum (1984) |
X |
391)
493)
|
5.1×101 |
|
Johnson et al. (1996) |
C |
|
5.2×101 |
|
Keene et al. (1995) |
C |
|
8.5×101 |
|
Keene et al. (1995) |
C |
|
1.0×102 |
|
Keshavarz et al. (2022) |
Q |
|
3.1×101 |
|
Duchowicz et al. (2020) |
Q |
|
1.4×101 |
|
Wang et al. (2017) |
Q |
81)
239)
|
2.9×102 |
|
Wang et al. (2017) |
Q |
81)
240)
|
6.5×101 |
|
Wang et al. (2017) |
Q |
81)
241)
|
3.3×101 |
|
Li et al. (2014) |
Q |
242)
|
2.0×101 |
|
Raventos-Duran et al. (2010) |
Q |
243)
244)
|
1.2×102 |
|
Raventos-Duran et al. (2010) |
Q |
245)
|
2.0×101 |
|
Raventos-Duran et al. (2010) |
Q |
246)
|
1.3×102 |
|
Hilal et al. (2008) |
Q |
|
3.2×101 |
|
Modarresi et al. (2007) |
Q |
68)
|
|
6100 |
Kühne et al. (2005) |
Q |
|
9.9×101 |
|
Yaffe et al. (2003) |
Q |
249)
250)
|
3.1×101 |
|
Abraham (2003) |
Q |
|
3.1×101 |
|
English and Carroll (2001) |
Q |
231)
232)
|
1.1×101 |
|
Katritzky et al. (1998) |
Q |
|
2.3×101 |
|
Russell et al. (1992) |
Q |
280)
|
3.1×101 |
|
Suzuki et al. (1992) |
Q |
233)
|
3.9×101 |
|
Nirmalakhandan and Speece (1988) |
Q |
|
9.9×101 |
|
Duchowicz et al. (2020) |
? |
21)
186)
|
1.1×101 |
|
Maniere et al. (2011) |
? |
166)
242)
|
|
6200 |
Kühne et al. (2005) |
? |
|
8.4 |
|
Yaws (1999) |
? |
21)
|
8.2 |
|
Yaws and Yang (1992) |
? |
21)
|
3.3×101 |
|
Abraham et al. (1990) |
? |
|
3.3×101 |
|
Hine and Mookerjee (1975) |
? |
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Abraham, M. H.: Thermodynamics of solution of homologous series of solutes in water, J. Chem. Soc. Faraday Trans. 1, 80, 153–181, doi:10.1039/F19848000153 (1984).
-
Abraham, M. H.: The determination of air/water partition coefficients for alkyl carboxylic acids by a new indirect method, J. Environ. Monit., 5, 747–752, doi:10.1039/B308175C (2003).
-
Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
-
Fredenhagen, K. & Liebster, H.: Die Teildrucke und Verteilungszahlen der Essigsäure über ihren wässerigen Lösungen bei 25∘C, Z. Phys. Chem., 162A, 449–453, doi:10.1515/ZPCH-1932-16234 (1932).
-
Gaffney, J. S. & Senum, G. I.: Peroxides, peracids, aldehydes, and PANs and their links to natural and anthropogenic organic sources, in: Gas-Liquid Chemistry of Natural Waters, edited by Newman, L., pp. 5–1–5–7, NTIS TIC-4500, UC-11, BNL 51757 Brookhaven National Laboratory (1984).
-
Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry’s law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA (1982).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
-
Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
-
Jacob, D. J., Gottlieb, E. W., & Prather, M. J.: Chemistry of a polluted cloudy boundary layer, J. Geophys. Res., 94, 12 975–13 002, doi:10.1029/JD094ID10P12975 (1989).
-
Johnson, B. J., Betterton, E. A., & Craig, D.: Henry’s law coefficients of formic and acetic acids, J. Atmos. Chem., 24, 113–119, doi:10.1007/BF00162406 (1996).
-
Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
-
Keene, W. C. & Galloway, J. N.: Considerations regarding sources for formic and acetic acids in the troposphere, J. Geophys. Res., 91, 14 466–14 474, doi:10.1029/JD091ID13P14466 (1986).
-
Keene, W. C., Mosher, B. W., Jacob, D. J., Munger, J. W., Talbot, R. W., Artz, R. S., Maben, J. R., Daube, B. C., & Galloway, J. N.: Carboxylic acids in a high-elevation forested site in central Virginia, J. Geophys. Res., 100, 9345–9357, doi:10.1029/94JD01247 (1995).
-
Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
-
Khan, I. & Brimblecombe, P.: Henry’s law constants of low molecular weight (<130) organic acids, J. Aerosol Sci., 23, S897–S900, doi:10.1016/0021-8502(92)90556-B (1992).
-
Khan, I., Brimblecombe, P., & Clegg, S. L.: Solubilities of pyruvic acid and the lower (C1-C6) carboxylic acids. Experimental determination of equilibrium vapour pressures above pure aqueous and salt solutions, J. Atmos. Chem., 22, 285–302, doi:10.1007/BF00696639 (1995).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Li, H., Wang, X., Yi, T., Xu, Z., & Liu, X.: Prediction of Henry’s law constants for organic compounds using multilayer feedforward neural networks based on linear salvation energy relationship, J. Chem. Pharm. Res., 6, 1557–1564 (2014).
-
Maniere, I., Bouneb, F., Fastier, A., Courty, B., Dumenil, J., Poupard, M., & Mercier, T.: AGRITOX-Database on pesticide active substances, Toxicol. Lett., 205S, S231–S232, doi:10.1016/J.TOXLET.2011.05.792, URL https://www.data.gouv.fr/fr/datasets/base-de-donnees-agritox (2011).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
-
Plyasunov, A. V., O’Connell, J. P., Wood, R. H., & Shock, E. L.: Semiempirical equation of state for the infinite dilution thermodynamic functions of hydration of nonelectrolytes over wide ranges of temperature and pressure, Fluid Phase Equilib., 183–184, 133–142, doi:10.1016/S0378-3812(01)00427-7 (2001).
-
Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
-
Russell, C. J., Dixon, S. L., & Jurs, P. C.: Computer-assisted study of the relationship between molecular structure and Henry’s law constant, Anal. Chem., 64, 1350–1355, doi:10.1021/AC00037A009 (1992).
-
Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
-
Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
-
Servant, J., Kouadio, G., Cros, B., & Delmas, R.: Carboxylic monoacids in the air of Mayombe forest (Congo): Role of the forest as a source or sink, J. Atmos. Chem., 12, 367–380, doi:10.1007/BF00114774 (1991).
-
Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
-
Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
-
von Hartungen, E., Wisthaler, A., Mikoviny, T., Jaksch, D., Boscaini, E., Dunphy, P. J., & Märk, T. D.: Proton-transfer-reaction mass spectrometry (PTR-MS) of carboxylic acids. Determination of Henry’s law constants and axillary odour investigations, Int. J. Mass Spectrom., 239, 243–248, doi:10.1016/J.IJMS.2004.09.009 (2004).
-
Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
-
Winiwarter, W., Puxbaum, H., Fuzzi, S., Facchini, M. C., Orsi, G., Beltz, N., Enderle, K.-H., & Jaeschke, W.: Organic acid gas and liquid-phase measurements in Po valley fall-winter conditions in the presence of fog, Tellus, 40B, 348–357, doi:10.1111/J.1600-0889.1988.TB00109.X (1988).
-
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
81) |
Value at T = 288 K. |
166) |
Data taken from the AGRITOX database file agritox-20210608.zip. |
186) |
Experimental value, extracted from HENRYWIN. |
231) |
English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown. |
232) |
Value from the training dataset. |
233) |
Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details. |
239) |
Calculated using linear free energy relationships (LFERs). |
240) |
Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC). |
241) |
Calculated using COSMOtherm. |
242) |
Temperature is not specified. |
243) |
Value from the training dataset. |
244) |
Calculated using the GROMHE model. |
245) |
Calculated using the SPARC approach. |
246) |
Calculated using the HENRYWIN method. |
249) |
Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here. |
250) |
Value from the training set. |
280) |
Value from the training set. |
299) |
Value given here as quoted by Staudinger and Roberts (1996). |
330) |
It was found that Hs changes with the concentration of the solution. |
391) |
Value given here as quoted by Gaffney et al. (1987). |
489) |
The value given here was measured at a liquid-phase mixing ratio of 1 μmol mol−1. Servant et al. (1991) found that the Henry's law constant changes at higher concentrations. |
490) |
Abraham (1984) smoothed the values from a plot of enthalpy against carbon number. |
491) |
The value of Hs⊖ was taken from Keene and Galloway (1986). |
493) |
Value at pH = 4. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|