MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Carboxylic acids (RCOOH) and peroxy carboxylic acids (RCOOOH) → ethanoic acid

FORMULA:CH3COOH
TRIVIAL NAME: acetic acid
CAS RN:64-19-7
STRUCTURE
(FROM NIST):
InChIKey:QTBSBXVTEAMEQO-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
4.0×101 6200 Burkholder et al. (2019) L
4.0×101 6200 Burkholder et al. (2015) L
4.0×101 6200 Sander et al. (2011) L
4.0×101 6200 Sander et al. (2006) L
4.6×101 6300 Staudinger and Roberts (2001) L
1.4×101 von Hartungen et al. (2004) M
4.0×101 6300 Johnson et al. (1996) M
5.4×101 Khan et al. (1995) M
5.4×101 8300 Khan and Brimblecombe (1992) M
9.2×101 Servant et al. (1991) M 489)
Fredenhagen and Liebster (1932) M 330)
9.1 Hwang et al. (1992) V
6300 Abraham (1984) V
6200 Abraham (1984) R 490)
4.8×101 6400 Plyasunov et al. (2001) T
8.7×101 6400 Jacob et al. (1989) T
6400 Winiwarter et al. (1988) T 491)
8.7×101 Keene and Galloway (1986) T
9.7 4900 Goldstein (1982) X 299)
9.9×101 Gaffney and Senum (1984) X 391) 493)
5.1×101 Johnson et al. (1996) C
5.2×101 Keene et al. (1995) C
8.5×101 Keene et al. (1995) C
1.0×102 Keshavarz et al. (2022) Q
3.1×101 Duchowicz et al. (2020) Q
1.4×101 Wang et al. (2017) Q 81) 239)
2.9×102 Wang et al. (2017) Q 81) 240)
6.5×101 Wang et al. (2017) Q 81) 241)
3.3×101 Li et al. (2014) Q 242)
2.0×101 Raventos-Duran et al. (2010) Q 243) 244)
1.2×102 Raventos-Duran et al. (2010) Q 245)
2.0×101 Raventos-Duran et al. (2010) Q 246)
1.3×102 Hilal et al. (2008) Q
3.2×101 Modarresi et al. (2007) Q 68)
6100 Kühne et al. (2005) Q
9.9×101 Yaffe et al. (2003) Q 249) 250)
3.1×101 Abraham (2003) Q
3.1×101 English and Carroll (2001) Q 231) 232)
1.1×101 Katritzky et al. (1998) Q
2.3×101 Russell et al. (1992) Q 280)
3.1×101 Suzuki et al. (1992) Q 233)
3.9×101 Nirmalakhandan and Speece (1988) Q
9.9×101 Duchowicz et al. (2020) ? 21) 186)
1.1×101 Maniere et al. (2011) ? 166) 242)
6200 Kühne et al. (2005) ?
8.4 Yaws (1999) ? 21)
8.2 Yaws and Yang (1992) ? 21)
3.3×101 Abraham et al. (1990) ?
3.3×101 Hine and Mookerjee (1975) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H.: Thermodynamics of solution of homologous series of solutes in water, J. Chem. Soc. Faraday Trans. 1, 80, 153–181, doi:10.1039/F19848000153 (1984).
  • Abraham, M. H.: The determination of air/water partition coefficients for alkyl carboxylic acids by a new indirect method, J. Environ. Monit., 5, 747–752, doi:10.1039/B308175C (2003).
  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Fredenhagen, K. & Liebster, H.: Die Teildrucke und Verteilungszahlen der Essigsäure über ihren wässerigen Lösungen bei 25C, Z. Phys. Chem., 162A, 449–453, doi:10.1515/ZPCH-1932-16234 (1932).
  • Gaffney, J. S. & Senum, G. I.: Peroxides, peracids, aldehydes, and PANs and their links to natural and anthropogenic organic sources, in: Gas-Liquid Chemistry of Natural Waters, edited by Newman, L., pp. 5–1–5–7, NTIS TIC-4500, UC-11, BNL 51757 Brookhaven National Laboratory (1984).
  • Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry’s law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA (1982).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
  • Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
  • Jacob, D. J., Gottlieb, E. W., & Prather, M. J.: Chemistry of a polluted cloudy boundary layer, J. Geophys. Res., 94, 12 975–13 002, doi:10.1029/JD094ID10P12975 (1989).
  • Johnson, B. J., Betterton, E. A., & Craig, D.: Henry’s law coefficients of formic and acetic acids, J. Atmos. Chem., 24, 113–119, doi:10.1007/BF00162406 (1996).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keene, W. C. & Galloway, J. N.: Considerations regarding sources for formic and acetic acids in the troposphere, J. Geophys. Res., 91, 14 466–14 474, doi:10.1029/JD091ID13P14466 (1986).
  • Keene, W. C., Mosher, B. W., Jacob, D. J., Munger, J. W., Talbot, R. W., Artz, R. S., Maben, J. R., Daube, B. C., & Galloway, J. N.: Carboxylic acids in a high-elevation forested site in central Virginia, J. Geophys. Res., 100, 9345–9357, doi:10.1029/94JD01247 (1995).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Khan, I. & Brimblecombe, P.: Henry’s law constants of low molecular weight (<130) organic acids, J. Aerosol Sci., 23, S897–S900, doi:10.1016/0021-8502(92)90556-B (1992).
  • Khan, I., Brimblecombe, P., & Clegg, S. L.: Solubilities of pyruvic acid and the lower (C1-C6) carboxylic acids. Experimental determination of equilibrium vapour pressures above pure aqueous and salt solutions, J. Atmos. Chem., 22, 285–302, doi:10.1007/BF00696639 (1995).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Li, H., Wang, X., Yi, T., Xu, Z., & Liu, X.: Prediction of Henry’s law constants for organic compounds using multilayer feedforward neural networks based on linear salvation energy relationship, J. Chem. Pharm. Res., 6, 1557–1564 (2014).
  • Maniere, I., Bouneb, F., Fastier, A., Courty, B., Dumenil, J., Poupard, M., & Mercier, T.: AGRITOX-Database on pesticide active substances, Toxicol. Lett., 205S, S231–S232, doi:10.1016/J.TOXLET.2011.05.792, URL https://www.data.gouv.fr/fr/datasets/base-de-donnees-agritox (2011).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
  • Plyasunov, A. V., O’Connell, J. P., Wood, R. H., & Shock, E. L.: Semiempirical equation of state for the infinite dilution thermodynamic functions of hydration of nonelectrolytes over wide ranges of temperature and pressure, Fluid Phase Equilib., 183–184, 133–142, doi:10.1016/S0378-3812(01)00427-7 (2001).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Russell, C. J., Dixon, S. L., & Jurs, P. C.: Computer-assisted study of the relationship between molecular structure and Henry’s law constant, Anal. Chem., 64, 1350–1355, doi:10.1021/AC00037A009 (1992).
  • Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
  • Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
  • Servant, J., Kouadio, G., Cros, B., & Delmas, R.: Carboxylic monoacids in the air of Mayombe forest (Congo): Role of the forest as a source or sink, J. Atmos. Chem., 12, 367–380, doi:10.1007/BF00114774 (1991).
  • Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
  • Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
  • von Hartungen, E., Wisthaler, A., Mikoviny, T., Jaksch, D., Boscaini, E., Dunphy, P. J., & Märk, T. D.: Proton-transfer-reaction mass spectrometry (PTR-MS) of carboxylic acids. Determination of Henry’s law constants and axillary odour investigations, Int. J. Mass Spectrom., 239, 243–248, doi:10.1016/J.IJMS.2004.09.009 (2004).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Winiwarter, W., Puxbaum, H., Fuzzi, S., Facchini, M. C., Orsi, G., Beltz, N., Enderle, K.-H., & Jaeschke, W.: Organic acid gas and liquid-phase measurements in Po valley fall-winter conditions in the presence of fog, Tellus, 40B, 348–357, doi:10.1111/J.1600-0889.1988.TB00109.X (1988).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
81) Value at T = 288 K.
166) Data taken from the AGRITOX database file agritox-20210608.zip.
186) Experimental value, extracted from HENRYWIN.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
232) Value from the training dataset.
233) Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details.
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
242) Temperature is not specified.
243) Value from the training dataset.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
280) Value from the training set.
299) Value given here as quoted by Staudinger and Roberts (1996).
330) It was found that Hs changes with the concentration of the solution.
391) Value given here as quoted by Gaffney et al. (1987).
489) The value given here was measured at a liquid-phase mixing ratio of 1 μmol mol−1. Servant et al. (1991) found that the Henry's law constant changes at higher concentrations.
490) Abraham (1984) smoothed the values from a plot of enthalpy against carbon number.
491) The value of Hs was taken from Keene and Galloway (1986).
493) Value at pH = 4.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *