MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Ethers (ROR) → ethyl tert-butyl ether

FORMULA:C2H5OC(CH3)3
TRIVIAL NAME: ETBE
CAS RN:637-92-3
STRUCTURE
(FROM NIST):
InChIKey:NUMQCACRALPSHD-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
7.2×10−3 6900 Brockbank (2013) L
1.2×10−1 13000 Hwang et al. (2010) M 11) 521)
6.3×10−3 6600 Sieg et al. (2009) M 328)
4.4×10−3 4300 Falabella and Teja (2008) M 11) 340)
6.4×10−3 7300 Haimi et al. (2006) M 526)
6.1×10−3 6500 Arp and Schmidt (2004) M
4.2×10−3 Miller and Stuart (2000) M 73)
5.2×10−3 Yaws (2003) X 238)
7.8×10−3 Keshavarz et al. (2022) Q
1.2×10−3 Duchowicz et al. (2020) Q 300)
1.1×10−3 Wang et al. (2017) Q 81) 239)
4.1×10−3 Wang et al. (2017) Q 81) 240)
1.5×10−2 Wang et al. (2017) Q 81) 241)
2.9×10−2 Gharagheizi et al. (2012) Q
5.2×10−3 Gharagheizi et al. (2010) Q 247)
1.2×10−2 Katritzky et al. (1998) Q
6.0×10−3 Duchowicz et al. (2020) ? 21) 186)
3.7×10−3 7600 Pankow et al. (1996) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Arp, H. P. H. & Schmidt, T. C.: Air–water transfer of MTBE, its degradation products, and alternative fuel oxygenates: the role of temperature, Environ. Sci. Technol., 38, 5405–5412, doi:10.1021/ES049286O (2004).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Falabella, J. B. & Teja, A. S.: Air–water partitioning of gasoline components in the presence of sodium chloride, Energy Fuels, 22, 398–401, doi:10.1021/EF700513K (2008).
  • Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
  • Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
  • Haimi, P., Uusi-Kyyny, P., Pokki, J.-P., Aittamaa, J., & Keskinen, K. I.: Infinite dilution activity coefficient measurements by inert gas stripping method, Fluid Phase Equilib., 243, 126–132, doi:10.1016/J.FLUID.2006.02.022 (2006).
  • Hwang, I.-C., Kwak, H.-Y., & Park, S.-J.: Determination and prediction of Kow and dimensionless Henry’s constant (H) for 6 ether compounds at several temperatures, J. Ind. Eng. Chem., 16, 629–633, doi:10.1016/J.JIEC.2010.03.003 (2010).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Miller, M. E. & Stuart, J. D.: Measurement of aqueous Henry’s law constants for oxygenates and aromatics found in gasolines by the static headspace method, Anal. Chem., 72, 622–625, doi:10.1021/AC990757C (2000).
  • Pankow, J. F., Rathbun, R. E., & Zogorski, J. S.: Calculated volatilization rates of fuel oxygenate compounds and other gasoline-related compounds from rivers and streams, Chemosphere, 33, 921–937, doi:10.1016/0045-6535(96)00227-5 (1996).
  • Sieg, K., Starokozheva, E., Schmidt, M. U., & Püttmann, W.: Inverse temperature dependence of Henry’s law coefficients for volatile organic compounds in supercooled water, Chemosphere, 77, 8–14, doi:10.1016/J.CHEMOSPHERE.2009.06.028 (2009).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

11) Measured at high temperature and extrapolated to T = 298.15 K.
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
73) Value at T = 296 K.
81) Value at T = 288 K.
186) Experimental value, extracted from HENRYWIN.
238) Value given here as quoted by Gharagheizi et al. (2010).
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
247) Calculated using a combination of a group contribution method and neural networks.
300) Value from the test set for true external validation.
328) Sieg et al. (2009) also provide data for supercooled water. Here, only data above 0 °C were used to calculate the temperature dependence.
340) Values for salt solutions are also available from this reference.
521) Hwang et al. (2010) present regression parameters in their Table 6 and values extrapolated to 298.15 K in their Table 5. However, I was not able to reproduce their calculation. The data shown here are from my own regression of the measured data between 318.15 K and 333.15 K.
526) The data from Haimi et al. (2006) were fitted to the three-parameter equation: Hscp= exp( −780.30940 +40758.59752/T +112.07468 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *