MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Ethers (ROR) → diethyl ether

FORMULA:C2H5OC2H5
CAS RN:60-29-7
STRUCTURE
(FROM NIST):
InChIKey:RTZKZFJDLAIYFH-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
9.9×10−3 5800 Burkholder et al. (2019) L 1)
2.0×10−2 5800 Burkholder et al. (2015) L
9.9×10−3 5800 Brockbank (2013) L 1)
5.0×10−3 Steward et al. (1973) L 14)
9.6×10−3 5000 Allott et al. (1973) L
1.1×10−2 6600 Hiatt (2013) M
9.5×10−2 Helburn et al. (2008) M
1.0×10−2 5700 Ondo and Dohnal (2007) M 1)
1.1×10−2 Nielsen et al. (1994) M
3.3×10−3 Yu (1992) M 12)
7.0×10−3 3900 Lamarche and Droste (1989) M 347)
6.3×10−3 Guitart et al. (1989) M 14)
1.3×10−2 7400 Bachofen and Farhi (1971) M
6.3×10−3 Brody et al. (1971) M 14)
7.8×10−3 Signer et al. (1969) M
5.1×10−3 Eger et al. (1963) M 14)
1.1×10−2 Mackay et al. (2006c) V
1.0×10−2 5800 Fukuchi et al. (2002) V
1.1×10−2 Mackay et al. (1993) V
8.7×10−3 Hwang et al. (1992) V
1.1×10−2 Hine and Weimar (1965) V
1.1×10−2 Butler and Ramchandani (1935) V
6.0×10−3 5700 Bagno et al. (1991) T 475)
1.2×10−2 Yaws (2003) X 238)
4.3×10−3 Keshavarz et al. (2022) Q
6.8×10−3 Duchowicz et al. (2020) Q 185)
2.1×10−3 Wang et al. (2017) Q 81) 239)
1.6×10−2 Wang et al. (2017) Q 81) 240)
2.2×10−3 Wang et al. (2017) Q 81) 241)
7.7×10−3 Li et al. (2014) Q 242)
1.3×10−2 Gharagheizi et al. (2012) Q
6.2×10−3 Raventos-Duran et al. (2010) Q 243) 244)
1.2×10−2 Raventos-Duran et al. (2010) Q 245)
6.2×10−3 Raventos-Duran et al. (2010) Q 246)
1.1×10−2 Gharagheizi et al. (2010) Q 247)
7.0×10−3 Hilal et al. (2008) Q
1.3×10−2 Modarresi et al. (2007) Q 68)
5300 Kühne et al. (2005) Q
8.6×10−3 Yaffe et al. (2003) Q 249) 250)
2.4×10−2 English and Carroll (2001) Q 231) 232)
1.2×10−2 Katritzky et al. (1998) Q
1.7×10−3 Nirmalakhandan et al. (1997) Q
4.6×10−2 Russell et al. (1992) Q 280)
7.3×10−3 Suzuki et al. (1992) Q 233)
8.0×10−3 Duchowicz et al. (2020) ? 21) 186)
5700 Kühne et al. (2005) ?
1.2×10−2 Yaws (1999) ? 21)
5.8×10−3 Abraham and Weathersby (1994) ? 21)
7.7×10−3 Hoff et al. (1993) ? 21)
6.0×10−3 Abraham et al. (1990) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Allott, P. R., Steward, A., Flook, V., & Mapleson, W. W.: Variation with temperature of the solubilities of inhaled anaesthestics in water, oil and biological media, Br. J. Anaesth., 45, 294–300, doi:10.1093/BJA/45.3.294 (1973).
  • Bachofen, H. & Farhi, L. E.: Simple manometric apparatus for measuring partition coefficients of highly soluble gases, J. Appl. Physiol., 30, 136–139, doi:10.1152/JAPPL.1971.30.1.136 (1971).
  • Bagno, A., Lucchini, V., & Scorrano, G.: Thermodynamics of protonation of ketones and esters and energies of hydration of their conjugate acids, J. Phys. Chem., 95, 345–352, doi:10.1021/J100154A063 (1991).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Brody, A. W., Lyons, K. P., Kurowski, J. L., McGill, J. J., & Weaver, M. J.: Analysis and solubility of dimethyl and diethyl ether in water, saline, oils, and blood, J. Appl. Physiol., 31, 125–131, doi:10.1152/JAPPL.1971.31.1.125 (1971).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Butler, J. A. V. & Ramchandani, C. N.: The solubility of non-electrolytes. Part II. The influence of the polar group on the free energy of hydration of aliphatic compounds, J. Chem. Soc., pp. 952–955, doi:10.1039/JR9350000952 (1935).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Eger, E. I., Shargel, R., & Merkel, G.: Solubility of diethyl ether in water, blood and oil, Anesthesiology, 24, 676–678, doi:10.1097/00000542-196309000-00017 (1963).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Fukuchi, K., Miyoshi, K., Watanabe, T., Yonezawa, S., & Arai, Y.: Measurement and correlation of infinite dilution activity coefficients of alkanol or ether in aqueous solution, Fluid Phase Equilib., 194-197, 937–945, doi:10.1016/S0378-3812(01)00675-6 (2002).
  • Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
  • Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
  • Guitart, R., Puigdemont, F., & Arboix, M.: Rapid headspace gas chromatographic method for the determination of liquid/gas partition coefficients, J. Chromatogr., 491, 271–280, doi:10.1016/S0378-4347(00)82845-5 (1989).
  • Helburn, R., Albritton, J., Howe, G., Michael, L., & Franke, D.: Henry’s law constants for fragrance and organic solvent compounds in aqueous industrial surfactants, J. Chem. Eng. Data, 53, 1071–1079, doi:10.1021/JE700418A (2008).
  • Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hine, J. & Weimar, Jr., R. D.: Carbon basicity, J. Am. Chem. Soc., 87, 3387–3396, doi:10.1021/JA01093A018 (1965).
  • Hoff, J. T., Mackay, D., Gillham, R., & Shiu, W. Y.: Partitioning of organic chemicals at the air–water interface in environmental systems, Environ. Sci. Technol., 27, 2174–2180, doi:10.1021/ES00047A026 (1993).
  • Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Lamarche, P. & Droste, R. L.: Air stripping mass transfer correlations for volatile organics, J. Am. Water Works Assoc., 81, 78–89, doi:10.1002/J.1551-8833.1989.TB03326.X (1989).
  • Li, H., Wang, X., Yi, T., Xu, Z., & Liu, X.: Prediction of Henry’s law constants for organic compounds using multilayer feedforward neural networks based on linear salvation energy relationship, J. Chem. Pharm. Res., 6, 1557–1564 (2014).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton, ISBN 0873719735 (1993).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Oxygen Containing Compounds, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006c).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nielsen, F., Olsen, E., & Fredenslund, A.: Henry’s law constants and infinite dilution activity coefficients for volatile organic compounds in water by a validated batch air stripping method, Environ. Sci. Technol., 28, 2133–2138, doi:10.1021/ES00061A022 (1994).
  • Nirmalakhandan, N., Brennan, R. A., & Speece, R. E.: Predicting Henry’s law constant and the effect of temperature on Henry’s law constant, Wat. Res., 31, 1471–1481, doi:10.1016/S0043-1354(96)00395-8 (1997).
  • Ondo, D. & Dohnal, V.: Temperature dependence of limiting activity coefficients and Henry’s law constants of cyclic and open-chain ethers in water, Fluid Phase Equilib., 262, 121–136, doi:10.1016/J.FLUID.2007.08.013 (2007).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Russell, C. J., Dixon, S. L., & Jurs, P. C.: Computer-assisted study of the relationship between molecular structure and Henry’s law constant, Anal. Chem., 64, 1350–1355, doi:10.1021/AC00037A009 (1992).
  • Signer, R., Arm, H., & Daenicker, H.: Dampfdrücke, Dichten, thermodynamische Mischfunktionen und Brechungsindices der binären Systeme Wasser-Tetrahydrofuran und Wasser-Diäthyläther bei 25, Helv. Chim. Acta, 52, 2347–2351, doi:10.1002/HLCA.19690520816 (1969).
  • Steward, A., Allott, P. R., Cowles, A. L., & Mapleson, W. W.: Solubility coefficients for inhaled anaesthetics for water, oil and biological media, Br. J. Anaesth., 45, 282–293, doi:10.1093/BJA/45.3.282 (1973).
  • Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Yu, H.-Z.: The use of Henry’s law constants in the determination of factors that influence VOC concentration in aqueous and gaseous phases in wastewater treatment plant, Master’s thesis, New Jersey Institute of Technology, USA (1992).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
12) Value at T = 293 K.
14) Value at T = 310 K.
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
81) Value at T = 288 K.
185) Value from the validation set for checking whether the model is satisfactory for compounds that are absent from the training set.
186) Experimental value, extracted from HENRYWIN.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
232) Value from the training dataset.
233) Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details.
238) Value given here as quoted by Gharagheizi et al. (2010).
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
242) Temperature is not specified.
243) Value from the training dataset.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
247) Calculated using a combination of a group contribution method and neural networks.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
280) Value from the training set.
347) The temperature dependence is recalculated using the data in Table 4 of Lamarche and Droste (1989) and not taken from their Table 5.
475) Calculated under the assumption that ∆G and ∆H are based on [mol L−1] and [atm] as the standard states.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *