MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with chlorine (Cl)Chlorocarbons (C, H, Cl) → tetrachloromethane

FORMULA:CCl4
TRIVIAL NAME: carbontetrachloride
CAS RN:56-23-5
STRUCTURE
(FROM NIST):
InChIKey:VZGDMQKNWNREIO-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
3.4×10−4 4200 Schwardt et al. (2021) L 1)
3.6×10−4 4300 Burkholder et al. (2019) L
2.6×10−4 4200 Burkholder et al. (2019) L 71)
3.6×10−4 4300 Burkholder et al. (2015) L
2.6×10−4 4200 Burkholder et al. (2015) L 71)
3.5×10−4 4200 Brockbank (2013) L 1) 661)
3.4×10−4 4200 Sander et al. (2011) L
3.6×10−4 4300 Warneck (2007) L
3.4×10−4 4200 Sander et al. (2006) L
3.4×10−4 4200 Staudinger and Roberts (2001) L
3.4×10−4 4200 Staudinger and Roberts (1996) L
5.0×10−4 Mackay and Shiu (1981) L
5.0×10−4 4500 Hiatt (2013) M
3.0×10−4 4400 Chen et al. (2012) M
3.4×10−4 3800 Lutsyk et al. (2005) M
3.8×10−4 Ryu and Park (1999) M
4.0×10−4 Chiang et al. (1998) M 12)
2.9×10−4 3700 Bullister and Wisegarver (1998) M 662)
4.4×10−4 1900 Kondoh and Nakajima (1997) M
3.9×10−4 2600 Park et al. (1997) M
3.8×10−4 4400 Dewulf et al. (1995) M
3.6×10−4 Hoff et al. (1993) M
3.3×10−4 3600 Hansen et al. (1993) M 282)
2.3×10−4 Li and Carr (1993) M
2.9×10−4 4500 Wright et al. (1992) M 663)
3.8×10−4 3600 Tse et al. (1992) M
3.4×10−4 4100 Tancrède and Yanagisawa (1990) M
2.8×10−4 5600 Bissonette et al. (1990) M
3.3×10−4 4000 Ashworth et al. (1988) M 279)
3.3×10−4 4400 Gossett (1987) M
3.3×10−4 4300 Munz and Roberts (1987) M
3.3×10−4 Hellmann (1987) M 88)
4.3×10−4 Yurteri et al. (1987) M 12)
4.2×10−4 Munz and Roberts (1986) M
4.1×10−4 3200 Hunter-Smith et al. (1983) M 660)
3.6×10−4 4400 Leighton and Calo (1981) M
3.3×10−4 Warner et al. (1980) M
3.2×10−4 3300 Balls (1980) M
9.7×10−5 Sato and Nakajima (1979b) M 14)
4.5×10−4 Pearson and McConnell (1975) M 12) 651)
3.7×10−4 5200 Hartkopf and Karger (1973) M
3.5×10−4 4400 Rex (1906) M
3.4×10−4 Mackay et al. (2006b) V
3.6×10−4 4200 Fogg and Sangster (2003) V
4.3×10−4 Park et al. (1997) V
3.4×10−4 Mackay et al. (1993) V
3.4×10−4 Hwang et al. (1992) V
6.7×10−5 Ballschmiter and Wittlinger (1991) V
3.5×10−4 Warner et al. (1980) V
4.6×10−4 Smith and Bomberger (1980) V 24)
3.4×10−4 Dilling (1977) V
3.4×10−4 Hine and Mookerjee (1975) V
2.0×10−4 Pierotti (1965) T
3.4×10−4 Yaws (2003) X 238)
3.3×10−4 1100 Goldstein (1982) X 299)
3.8×10−4 Harrison et al. (1993) C
2.1×10−4 Harrison et al. (1993) C
4.5×10−4 Ryan et al. (1988) C
3.3×10−4 Shen (1982) C
4.6×10−4 Dilling (1977) C
3.7×10−4 Liss and Slater (1974) C
4.9×10−4 Hayer et al. (2022) Q 20)
5.4×10−4 Keshavarz et al. (2022) Q
6.3×10−4 Duchowicz et al. (2020) Q
3.4×10−4 Li et al. (2014) Q 242)
3.2×10−3 Gharagheizi et al. (2012) Q
3.1×10−4 Gharagheizi et al. (2010) Q 247)
5.4×10−4 Hilal et al. (2008) Q
2.3×10−4 Modarresi et al. (2007) Q 68)
3700 Kühne et al. (2005) Q
3.5×10−4 Yaffe et al. (2003) Q 249) 250)
2.1×10−4 English and Carroll (2001) Q 231) 232)
3.4×10−5 Katritzky et al. (1998) Q
3.5×10−4 Nirmalakhandan and Speece (1988) Q
4.1×10−4 Arbuckle (1983) Q
3.6×10−4 Duchowicz et al. (2020) ? 21) 186)
1.2×10−4 MacBean (2012a) ?
3.3×10−4 Mackay et al. (2006b) ?
4300 Kühne et al. (2005) ?
3.4×10−4 Yaws (1999) ? 21)
1.0×10−4 Abraham and Weathersby (1994) ? 21)
3.3×10−4 Mackay et al. (1993) ?
3.3×10−4 Yaws and Yang (1992) ? 21)
3.5×10−4 Abraham et al. (1990) ?
4.3×10−4 Mackay and Yeun (1983) ?
1.1×10−3 Chiou et al. (1980) ? 80)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Arbuckle, W. B.: Estimating activity coefficients for use in calculating environmental parameters, Environ. Sci. Technol., 17, 537–542, doi:10.1021/ES00115A008 (1983).
  • Ashworth, R. A., Howe, G. B., Mullins, M. E., & Rogers, T. N.: Air–water partitioning coefficients of organics in dilute aqueous solutions, J. Hazard. Mater., 18, 25–36, doi:10.1016/0304-3894(88)85057-X (1988).
  • Balls, P. W.: Gas transfer across air–water interfaces, Ph.D. thesis, University of East Anglia, Great Britain (1980).
  • Ballschmiter, K. & Wittlinger, R.: Interhemisphere exchange of hexachlorocyclohexanes, hexachlorobenzene, polychlorobiphenyls, and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane in the lower troposphere, Environ. Sci. Technol., 25, 1103–1111, doi:10.1021/ES00018A014 (1991).
  • Bissonette, E. M., Westrick, J. J., & Morand, J. M.: Determination of Henry’s coefficient for volatile organic compounds in dilute aqueous systems, in: Proceedings of the Annual Conference of the American Water Works Association, Cincinnati, OH, June 17–21, pp. 1913–1922 (1990).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Bullister, J. L. & Wisegarver, D. P.: The solubility of carbon tetrachloride in water and seawater, Deep-Sea Res. I, 45, 1285–1302, doi:10.1016/S0967-0637(98)00017-X (1998).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Chen, F., Freedman, D. L., Falta, R. W., & Murdoch, L. C.: Henry’s law constants of chlorinated solvents at elevated temperatures, Chemosphere, 86, 156–165, doi:10.1016/J.CHEMOSPHERE.2011.10.004 (2012).
  • Chiang, P.-C., Hung, C.-H., Mar, J. C., & Chang, E. E.: Henry’s constants and mass transfer coefficients of halogenated organic pollutants in an air stripping packed column, Wat. Sci. Tech., 38, 287–294 (1998).
  • Chiou, C. T., Freed, V. H., Peters, L. J., & Kohnert, R. L.: Evaporation of solutes from water, Environ. Int., 3, 231–236, doi:10.1016/0160-4120(80)90123-3 (1980).
  • Dewulf, J., Drijvers, D., & van Langenhove, H.: Measurement of Henry’s law constant as function of temperature and salinity for the low temperature range, Atmos. Environ., 29, 323–331, doi:10.1016/1352-2310(94)00256-K (1995).
  • Dilling, W. L.: Interphase transfer processes. II. Evaporation rates of chloro methanes, ethanes, ethylenes, propanes, and propylenes from dilute aqueous solutions. Comparisons with theoretical predictions, Environ. Sci. Technol., 11, 405–409, doi:10.1021/ES60127A009 (1977).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
  • Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
  • Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
  • Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry’s law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA (1982).
  • Gossett, J. M.: Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons, Environ. Sci. Technol., 21, 202–208, doi:10.1021/ES00156A012 (1987).
  • Hansen, K. C., Zhou, Z., Yaws, C. L., & Aminabhavi, T. M.: Determination of Henry’s law constants of organics in dilute aqueous solutions, J. Chem. Eng. Data, 38, 546–550, doi:10.1021/JE00012A017 (1993).
  • Harrison, D. P., Valsaraj, K. T., & Wetzel, D. M.: Air stripping of organics from ground water, Waste Manage., 13, 417–429, doi:10.1016/0956-053X(93)90074-7 (1993).
  • Hartkopf, A. & Karger, B. L.: Study of the interfacial properties of water by gas chromatography, Acc. Chem. Res., 6, 209–216, doi:10.1021/AR50066A006 (1973).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Hellmann, H.: Model tests on volatilization of organic trace substances in surfaces waters, Fresenius J. Anal. Chem., 328, 475–479, doi:10.1007/BF00475967 (1987).
  • Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
  • Hoff, J. T., Mackay, D., Gillham, R., & Shiu, W. Y.: Partitioning of organic chemicals at the air–water interface in environmental systems, Environ. Sci. Technol., 27, 2174–2180, doi:10.1021/ES00047A026 (1993).
  • Hunter-Smith, R. J., Balls, P. W., & Liss, P. S.: Henry’s law constants and the air-sea exchange of various low molecular weight halocarbon gases, Tellus, 35B, 170–176, doi:10.1111/J.1600-0889.1983.TB00021.X (1983).
  • Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kondoh, H. & Nakajima, T.: Optimization of headspace cryofocus gas chromatography/mass spectrometry for the analysis of 54 volatile organic compounds, and the measurement of their Henry’s constants, J. Environ. Chem., 7, 81–89, doi:10.5985/JEC.7.81 (1997).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Leighton, D. T. & Calo, J. M.: Distribution coefficients of chlorinated hydrocarbons in dilute air–water systems for groundwater contamination applications, J. Chem. Eng. Data, 26, 382–385, doi:10.1021/JE00026A010 (1981).
  • Li, J. & Carr, P. W.: Measurement of water-hexadecane partition coefficients by headspace gas chromatography and calculation of limiting activity coefficients in water, Anal. Chem., 65, 1443–1450, doi:10.1021/AC00058A023 (1993).
  • Li, H., Wang, X., Yi, T., Xu, Z., & Liu, X.: Prediction of Henry’s law constants for organic compounds using multilayer feedforward neural networks based on linear salvation energy relationship, J. Chem. Pharm. Res., 6, 1557–1564 (2014).
  • Liss, P. S. & Slater, P. G.: Flux of gases across the air-sea interface, Nature, 247, 181–184, doi:10.1038/247181A0 (1974).
  • Lutsyk, A., Portnanskij, V., Sujkov, S., & Tchuprina, V.: A new set of gas/water partition coefficients for the chloromethanes, Monatsh. Chem. – Chem. Mon., 136, 1183–1189, doi:10.1007/S00706-005-0319-6 (2005).
  • MacBean, C.: The Pesticide Manual, 16th Edition, Supplementary Entries – Extended, Tech. rep., British Crop Production Council, ISBN 190139686X (2012a).
  • Mackay, D. & Shiu, W. Y.: A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, doi:10.1063/1.555654 (1981).
  • Mackay, D. & Yeun, A. T. K.: Mass transfer coefficient correlations for volatilization of organic solutes from water, Environ. Sci. Technol., 17, 211–217, doi:10.1021/ES00110A006 (1983).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton, ISBN 0873719735 (1993).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. II of Halogenated Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006b).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Munz, C. & Roberts, P. V.: Effects of solute concentration and cosolvents on the aqueous activity coefficient of halogenated hydrocarbons, Environ. Sci. Technol., 20, 830–836, doi:10.1021/ES00150A013 (1986).
  • Munz, C. & Roberts, P. V.: Air–water phase equilibria of volatile organic solutes, J. Am. Water Works Assoc., 79, 62–69, doi:10.1002/J.1551-8833.1987.TB02844.X (1987).
  • Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
  • Park, S.-J., Han, S.-D., & Ryu, S.-A.: Measurement of air/water partition coefficient (Henry’s law constant) by using EPICS method and their relationship with vapor pressure and water solubility, J. Korean Inst. Chem. Eng., 35, 915–920 (1997).
  • Pearson, C. R. & McConnell, G.: Chlorinated C1 and C2 hydrocarbons in the marine environment, Proc. R. Soc. Lond. B, 189, 305–332, doi:10.1098/RSPB.1975.0059 (1975).
  • Pierotti, R. A.: Aqueous solutions of nonpolar gases, J. Phys. Chem., 69, 281–288, doi:10.1021/J100885A043 (1965).
  • Rex, A.: Über die Löslichkeit der Halogenderivate der Kohlenwasserstoffe in Wasser, Z. Phys. Chem., 55, 355–370, doi:10.1515/ZPCH-1906-5519 (1906).
  • Ryan, J. A., Bell, R. M., Davidson, J. M., & O’Connor, G. A.: Plant uptake of non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323, doi:10.1016/0045-6535(88)90142-7 (1988).
  • Ryu, S.-A. & Park, S.-J.: A rapid determination method of the air/water partition coefficient and its application, Fluid Phase Equilib., 161, 295–304, doi:10.1016/S0378-3812(99)00193-4 (1999).
  • Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
  • Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
  • Sato, A. & Nakajima, T.: A structure-activity relationship of some chlorinated hydrocarbons, Arch. Environ. Health, 34, 69–75, doi:10.1080/00039896.1979.10667371 (1979b).
  • Schwardt, A., Dahmke, A., & Köber, R.: Henry’s law constants of volatile organic compounds between 0 and 95C – Data compilation and complementation in context of urban temperature increases of the subsurface, Chemosphere, 272, 129 858, doi:10.1016/J.CHEMOSPHERE.2021.129858 (2021).
  • Shen, T. T.: Estimation of organic compound emissions from waste lagoons, J. Air Pollut. Control Assoc., 32, 79–82, doi:10.1080/00022470.1982.10465374 (1982).
  • Smith, J. H. & Bomberger, D. C.: Prediction of volatilization rate of chemicals in water, in: Hydrocarbons and Halogenated Hydrocarbons in the Aquatic Environment, edited by Afghan, B. K., Mackay, D., Braun, H. E., Chau, A. S. Y., Lawrence, J., Lean, D. R. S., Meresz, O., Miles, J. R. W., Pierce, R. C., Rees, G. A. V., White, R. E., Whittle, D. M., & Williams, D. T., pp. 445–451, Plenum Press New York (1980).
  • Staudinger, J. & Roberts, P. V.: A critical review of Henry’s law constants for environmental applications, Crit. Rev. Environ. Sci. Technol., 26, 205–297, doi:10.1080/10643389609388492 (1996).
  • Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
  • Tancrède, M. V. & Yanagisawa, Y.: An analytical method to determine Henry’s law constant for selected volatile organic compounds at concentrations and temperatures corresponding to tap water use, J. Air Waste Manage. Assoc., 40, 1658–1663, doi:10.1080/10473289.1990.10466813 (1990).
  • Tse, G., Orbey, H., & Sandler, S. I.: Infinite dilution activity coefficients and Henry’s law coefficients of some priority water pollutants determined by a relative gas chromatographic method, Environ. Sci. Technol., 26, 2017–2022, doi:10.1021/ES00034A021 (1992).
  • Warneck, P.: A review of Henry’s law coefficients for chlorine-containing C1 and C2 hydrocarbons, Chemosphere, 69, 347–361, doi:10.1016/J.CHEMOSPHERE.2007.04.088 (2007).
  • Warner, H. P., Cohen, J. M., & Ireland, J. C.: Determination of Henry’s law constants of selected priority pollutants, Tech. rep., U.S. EPA, Municipal Environmental Research Laboratory, Wastewater Research Division, Cincinnati, Ohio, 45268, USA (1980).
  • Wright, D. A., Sandler, S. I., & DeVoll, D.: Infinite dilution activity coefficients and solubilities of halogenated hydrocarbons in water at ambient temperatures, Environ. Sci. Technol., 26, 1828–1831, doi:10.1021/ES00033A018 (1992).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
  • Yurteri, C., Ryan, D. F., Callow, J. J., & Gurol, M. D.: The effect of chemical composition of water on Henry’s law constant, J. Water Pollut. Control Fed., 59, 950–956 (1987).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
12) Value at T = 293 K.
14) Value at T = 310 K.
20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
24) Value at "room temperature".
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
71) Solubility in sea water.
80) Value at T = 297 K.
88) Value at T = 295 K.
186) Experimental value, extracted from HENRYWIN.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
232) Value from the training dataset.
238) Value given here as quoted by Gharagheizi et al. (2010).
242) Temperature is not specified.
247) Calculated using a combination of a group contribution method and neural networks.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
279) Data are taken from the report by Howe et al. (1987).
282) The same data were also published in Hansen et al. (1995).
299) Value given here as quoted by Staudinger and Roberts (1996).
651) The same data were also published in McConnell et al. (1975).
660) Probably an interpolation of the data from Balls (1980).
661) Values at 298 K in Tables C2 and C5 of Brockbank (2013) are inconsistent, with 5 % difference.
662) The data from Bullister and Wisegarver (1998) were fitted to the three-parameter equation: Hscp= exp( −704.15798 +34144.64622/T +102.06046 ln(T)) mol m−3 Pa−1, with T in K.
663) The data from Wright et al. (1992) were fitted to the three-parameter equation: Hscp= exp( −426.63883 +22457.44484/T +60.22986 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *