When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | C4H9COOC2H5 |
TRIVIAL NAME:
|
ethyl valerate
|
CAS RN: | 539-82-2 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | ICMAFTSLXCXHRK-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
2.3×10−2 |
6800 |
Plyasunov et al. (2004) |
L |
|
1.4×10−1 |
4800 |
Meynier et al. (2003) |
M |
38)
|
2.7×10−2 |
|
Duchowicz et al. (2020) |
V |
187)
|
2.8×10−2 |
|
Meylan and Howard (1991) |
V |
|
2.8×10−2 |
|
Abraham (1984) |
V |
|
2.9×10−2 |
|
Hine and Mookerjee (1975) |
V |
|
2.7×10−2 |
|
Meynier et al. (2003) |
C |
|
8.6×10−2 |
|
Duchowicz et al. (2020) |
Q |
|
2.5×10−2 |
|
Raventos-Duran et al. (2010) |
Q |
243)
244)
|
1.6×10−2 |
|
Raventos-Duran et al. (2010) |
Q |
245)
|
2.0×10−2 |
|
Raventos-Duran et al. (2010) |
Q |
246)
|
1.5×10−2 |
|
Hilal et al. (2008) |
Q |
|
2.6×10−2 |
|
Modarresi et al. (2007) |
Q |
68)
|
2.3×10−2 |
|
English and Carroll (2001) |
Q |
231)
232)
|
2.0×10−2 |
|
Suzuki et al. (1992) |
Q |
233)
|
1.8×10−2 |
|
Meylan and Howard (1991) |
Q |
|
2.2×10−2 |
|
Nirmalakhandan and Speece (1988) |
Q |
|
2.7×10−2 |
|
Abraham et al. (1990) |
? |
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Abraham, M. H.: Thermodynamics of solution of homologous series of solutes in water, J. Chem. Soc. Faraday Trans. 1, 80, 153–181, doi:10.1039/F19848000153 (1984).
-
Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
-
Meylan, W. M. & Howard, P. H.: Bond contribution method for estimating Henry’s law constants, Environ. Toxicol. Chem., 10, 1283–1293, doi:10.1002/ETC.5620101007 (1991).
-
Meynier, A., Garillon, A., Lethuaut, L., & Genot, C.: Partition of five aroma compounds between air and skim milk, anhydrous milk fat or full-fat cream, Lait, 83, 223–235, doi:10.1051/LAIT:2003012 (2003).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
-
Plyasunov, A. V., Plyasunova, N. V., & Shock, E. L.: Group contribution values for the thermodynamic functions of hydration of aliphatic esters at 298.15 K, 0.1 MPa, J. Chem. Eng. Data, 49, 1152–1167, doi:10.1021/JE049850A (2004).
-
Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
-
Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
38) |
Value at T = 303 K. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
187) |
Estimation based on the quotient between vapor pressure and water solubility, extracted from HENRYWIN. |
231) |
English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown. |
232) |
Value from the training dataset. |
233) |
Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details. |
243) |
Value from the training dataset. |
244) |
Calculated using the GROMHE model. |
245) |
Calculated using the SPARC approach. |
246) |
Calculated using the HENRYWIN method. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|