MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with nitrogen (N)Nitro compounds (RNO2) → 2,4-dinitrophenol

FORMULA:C6H4N2O5
CAS RN:51-28-5
STRUCTURE
(FROM NIST):
InChIKey:UFBJCMHMOXMLKC-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
9.7×102 Chao et al. (2017) M
1.1×102 Tremp et al. (1993) M 12)
3.5×101 Schwarzenbach et al. (1988) V 12)
1.5×104 Ryan et al. (1988) C
2.0×102 Abraham et al. (2019) Q
2.6×103 Wang et al. (2017) Q 81) 239)
2.1×103 Wang et al. (2017) Q 81) 240)
3.0 Wang et al. (2017) Q 81) 241)
7.8×101 Raventos-Duran et al. (2010) Q 243) 244)
6.2×102 Raventos-Duran et al. (2010) Q 245)
3.9×102 Raventos-Duran et al. (2010) Q 246)
3.6×102 Zhang et al. (2010) Q 288) 289)
6.2×102 Zhang et al. (2010) Q 288) 290)
4.7 Zhang et al. (2010) Q 288) 291)
1.3×103 Zhang et al. (2010) Q 288) 292)
4.7×101 Modarresi et al. (2007) Q 68)
5000 Kühne et al. (2005) Q
3300 Kühne et al. (2005) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H., Acree Jr., W. E., Hoekman, D., Leo, A. J., & Medlin, M. L.: A new method for the determination of Henry’s law constants (air–water-partition coefficients), Fluid Phase Equilib., 502, 112 300, doi:10.1016/J.FLUID.2019.112300 (2019).
  • Chao, H.-P., Lee, J.-F., & Chiou, C. T.: Determination of the Henry’s law constants of low-volatility compounds via the measured air-phase transfer coefficients, Wat. Res., 120, 238–244, doi:10.1016/J.WATRES.2017.04.074 (2017).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Ryan, J. A., Bell, R. M., Davidson, J. M., & O’Connor, G. A.: Plant uptake of non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323, doi:10.1016/0045-6535(88)90142-7 (1988).
  • Schwarzenbach, R. P., Stierli, R., Folsom, B. R., & Zeyer, J.: Compound properties relevant for assessing the environmental partitioning of nitrophenols, Environ. Sci. Technol., 22, 83–92, doi:10.1021/ES00166A009 (1988).
  • Tremp, J., Mattrel, P., Fingler, S., & Giger, W.: Phenols and nitrophenols as tropospheric pollutants: Emissions from automobile exhausts and phase transfer in the atmosphere, Water Air Soil Pollut., 68, 113–123, doi:10.1007/BF00479396 (1993).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Zhang, X., Brown, T. N., Wania, F., Heimstad, E. S., & Goss, K.-U.: Assessment of chemical screening outcomes based on different partitioning property estimation methods, Environ. Int., 36, 514–520, doi:10.1016/J.ENVINT.2010.03.010 (2010).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

12) Value at T = 293 K.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
81) Value at T = 288 K.
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
243) Value from the training dataset.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
288) Data taken from the supplement.
289) Calculated using the EPI Suite (v4.0) method.
290) Calculated using the SPARC (v4.2) method.
291) Calculated using the COSMOtherm (v2.1) method.
292) Calculated using the ABSOLV (ADMEBoxes v4.1) method.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *