Henry's Law Constants

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Henry's Law Constants





Contact, Impressum, Acknowledgements

When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399-4981 (2015), doi:10.5194/acp-15-4399-2015

Henry's Law ConstantsOrganic species with oxygen (O)Aldehydes (RCHO) → methanal

TRIVIAL NAME: formaldehyde
CAS RN:50-00-0

Hscp d ln Hs cp / d (1/T) Reference Type Notes
[mol/(m3Pa)] [K]
3.2×101 6800 Warneck and Williams (2012) L 187)
3.2×101 7100 Sander et al. (2011) L 187)
3.2×101 7100 Sander et al. (2006) L 187)
3.2×101 6800 Staudinger and Roberts (2001) L 187)
3.2×101 6800 Staudinger and Roberts (1996) L 187)
3.5×101 5700 Liu et al. (2015) M
3.4×101 6400 Allou et al. (2011) M 187)
5.3×101 1600 Seyfioglu and Odabasi (2007) M 187)
9.9×101 Kim et al. (2000) M 31) 187)
3.1×101 6500 Zhou and Mopper (1990) M 187) 188)
3.1×101 7200 Betterton and Hoffmann (1988) M 187)
Dong and Dasgupta (1986) M 189)
Ledbury and Blair (1925) M 190)
Blair and Ledbury (1925) M 190)
3.0×101 Lide and Frederikse (1995) V 187)
2.3 Hwang et al. (1992) V 187)
6.9×101 6400 Chameides (1984) T 187)
2.9×101 7200 Bell (1966) X 187) 191)
5.9×101 Gaffney and Senum (1984) X 153) 187)
4.5×101 Lee and Zhou (1993) C 31) 187)
Hough (1991) C 190)
1.4×102 Warneck (1988) C 187)
2.8×10−2 Hilal et al. (2008) Q
1.8×10−1 Nirmalakhandan et al. (1997) Q
1.0×102 Meylan and Howard (1991) Q 187)
4.2×10−2 Abraham et al. (1990) ?
6.2×101 Seinfeld (1986) ? 7) 187)
Lelieveld and Crutzen (1991) W 190)
Pandis and Seinfeld (1989) W 190)


  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Allou, L., El Maimouni, L., & Le Calvé, S.: Henry’s law constant measurements for formaldehyde and benzaldehyde as a function of temperature and water composition, Atmos. Environ., 45, 2991–2998, doi:10.1016/J.ATMOSENV.2010.05.044 (2011).
  • Bell, R. P.: The reversible hydration of carbonyl compounds, Adv. Phys. Org. Chem., 4, 1–29, doi:10.1016/S0065-3160(08)60351-2 (1966).
  • Betterton, E. A. & Hoffmann, M. R.: Henry’s law constants of some environmentally important aldehydes, Environ. Sci. Technol., 22, 1415–1418, doi:10.1021/ES00177A004 (1988).
  • Blair, E. W. & Ledbury, W.: The partial formaldehyde vapour pressures of aqueous solutions of formaldehyde. Part I, J. Chem. Soc., 127, 26–40, doi:10.1039/CT9252700026 (1925).
  • Chameides, W. L.: The photochemistry of a remote marine stratiform cloud, J. Geophys. Res., 89D, 4739–4755, doi:10.1029/JD089ID03P04739 (1984).
  • Dong, S. & Dasgupta, P. G.: Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous formaldehyde, Environ. Sci. Technol., 20, 637–640, doi:10.1021/ES00148A016 (1986).
  • Gaffney, J. S. & Senum, G. I.: Peroxides, peracids, aldehydes, and PANs and their links to natural and anthropogenic organic sources, in: Gas-Liquid Chemistry of Natural Waters, edited by Newman, L., pp. 5–1–5–7, NTIS TIC-4500, UC-11, BNL 51757 Brookhaven National Laboratory (1984).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hough, A. M.: Development of a two-dimensional global tropospheric model: Model chemistry, J. Geophys. Res., 96D, 7325–7362, doi:10.1029/90JD01327 (1991).
  • Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
  • Kim, B. R., Kalis, E. M., DeWulf, T., & Andrews, K. M.: Henry’s Law constants for paint solvents and their implications on volatile organic compound emissions from automotive painting, Water Environ. Res., 72, 65–74, doi:10.2175/106143000X137121 (2000).
  • Ledbury, W. & Blair, E. W.: The partial formaldehyde vapour pressures of aqueous solutions of formaldehyde. Part II, J. Chem. Soc., 127, 2832–2839, doi:10.1039/CT9252702832 (1925).
  • Lee, Y.-N. & Zhou, X.: Method for the determination of some soluble atmospheric carbonyl compounds, Environ. Sci. Technol., 27, 749–756, doi:10.1021/ES00041A020 (1993).
  • Lelieveld, J. & Crutzen, P. J.: The role of clouds in tropospheric photochemistry, J. Atmos. Chem., 12, 229–267, doi:10.1007/BF00048075 (1991).
  • Lide, D. R. & Frederikse, H. P. R., eds.: CRC Handbook of Chemistry and Physics, 76th Edition, CRC Press, Inc., Boca Raton, FL (1995).
  • Liu, X., Guo, Z., Roache, N. F., Mocka, C. A., Allen, M. R., & Mason, M. A.: Henry’s law constant and overall mass transfer coefficient for formaldehyde emission from small water pools under simulated indoor environmental conditions, Environ. Sci. Technol., 49, 1603–1610, doi:10.1021/ES504540C (2015).
  • Meylan, W. M. & Howard, P. H.: Bond contribution method for estimating Henry’s law constants, Environ. Toxicol. Chem., 10, 1283–1293, doi:10.1002/ETC.5620101007 (1991).
  • Nirmalakhandan, N., Brennan, R. A., & Speece, R. E.: Predicting Henry’s law constant and the effect of temperature on Henry’s law constant, Wat. Res., 31, 1471–1481, doi:10.1016/S0043-1354(96)00395-8 (1997).
  • Pandis, S. N. & Seinfeld, J. H.: Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry, J. Geophys. Res., 94D, 1105–1126, doi:10.1029/JD094ID01P01105 (1989).
  • Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL (2006).
  • Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL (2011).
  • Seinfeld, J. H.: Atmospheric Chemistry and Physics of Air Pollution, Wiley-Interscience Publication, NY (1986).
  • Seyfioglu, R. & Odabasi, M.: Determination of Henry’s law constant of formaldehyde as a function of temperature: Application to air-water exchange in Tahtali lake in Izmir, Turkey, Environ. Monit. Assess., 128, 343–349, doi:10.1007/S10661-006-9317-3 (2007).
  • Staudinger, J. & Roberts, P. V.: A critical review of Henry’s law constants for environmental applications, Crit. Rev. Environ. Sci. Technol., 26, 205–297, doi:10.1080/10643389609388492 (1996).
  • Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
  • Warneck, P.: Chemistry of the Natural Atmosphere, Acad., San Diego, CA (1988).
  • Warneck, P. & Williams, J.: The Atmospheric Chemist’s Companion: Numerical Data for Use in the Atmospheric Sciences, Springer Verlag, doi:10.1007/978-94-007-2275-0 (2012).
  • Zhou, X. & Mopper, K.: Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; Implications for air-sea exchange, Environ. Sci. Technol., 24, 1864–1869, doi:10.1021/ES00082A013 (1990).


Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2015) for further details.


7) Several references are given in the list of Henry's law constants but not assigned to specific species.
31) Value at T = 295 K.
153) Value given here as quoted by Gaffney et al. (1987).
187) Effective value that takes into account the hydration of HCHO:
Hs= ([HCHO]+[CH2(OH)2])/p(HCHO)
188) Data from Table 1 by Zhou and Mopper (1990) were used to redo the regression analysis. The data for acetone in their Table 2 are incorrect.
189) Dong and Dasgupta (1986) found that the Henry's law constant for HCHO is not a true constant but increases with increasing concentration. They recommend the expression
[HCHO] = 10(4538/T−11.34) ×p(HCHO)(252.2/T+0.2088)
with [HCHO] = aqueous-phase concentration in [M], p(HCHO) = partial pressure in [atm], and T = temperature in [K]. Note that this expression does not converge asymptotically to a constant value at infinite dilution.
190) Ledbury and Blair (1925) (and also Blair and Ledbury (1925)) measured the solubility of HCHO at very high concentrations around 5 to 15 M. Their value of Hs increases with HCHO concentration. Lelieveld and Crutzen (1991), Hough (1991), and Pandis and Seinfeld (1989) all use these solubility data but do not specify how they extrapolated to lower concentrations. Since the concentration range is far from typical values in atmospheric chemistry, the value is not reproduced here.
191) Value given here as quoted by Möller and Mauersberger (1992).

The numbers of the notes are the same as in Sander (2015). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants


* * *