When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | C17H12 |
CAS RN: | 238-84-6 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | HKMTVMBEALTRRR-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
3.7×10−1 |
4400 |
Bamford et al. (1999a) |
M |
|
1.1 |
|
Keshavarz et al. (2022) |
Q |
|
2.2×10−1 |
|
Duchowicz et al. (2020) |
Q |
185)
|
4.6×10−1 |
|
Modarresi et al. (2007) |
Q |
68)
|
|
6300 |
Kühne et al. (2005) |
Q |
|
3.7×10−1 |
|
Duchowicz et al. (2020) |
? |
21)
186)
|
|
4400 |
Kühne et al. (2005) |
? |
|
|
|
Shiu and Ma (2000) |
W |
362)
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Bamford, H. A., Poster, D. L., & Baker, J. E.: Temperature dependence of Henry’s law constants of thirteen polycyclic aromatic hydrocarbons between 4∘C and 31∘C, Environ. Toxicol. Chem., 18, 1905–1912, doi:10.1002/ETC.5620180906 (1999a).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Shiu, W. Y. & Ma, K.-C.: Temperature dependence of physical-chemical properties of selected chemicals of environmental interest. I. mononuclear and polynuclear aromatic hydrocarbons, J. Phys. Chem. Ref. Data, 29, 41–130, doi:10.1063/1.556055 (2000).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
185) |
Value from the validation set for checking whether the model is satisfactory for compounds that are absent from the training set. |
186) |
Experimental value, extracted from HENRYWIN. |
362) |
Because of discrepancies between the values shown in Tables 4 and 5 of Shiu and Ma (2000), the data are not used here. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|