MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Ethers (ROR) → methyl tert-butyl ether

FORMULA:CH3OC(CH3)3
TRIVIAL NAME: MTBE
CAS RN:1634-04-4
STRUCTURE
(FROM NIST):
InChIKey:BZLVMXJERCGZMT-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
1.2×10−2 5100 Schwardt et al. (2021) L 1)
1.3×10−2 5900 Brockbank (2013) L 1)
1.7×10−2 9100 Hiatt (2013) M
2.4×10−2 18000 Zhang et al. (2013) M 326)
3.2×10−2 Zhang et al. (2013) M 327)
1.9×10−2 5300 Hwang et al. (2010) M 11) 33) 521)
1.1×10−2 4800 Sieg et al. (2009) M 328)
1.1×10−2 4400 Falabella and Teja (2008) M 11) 340)
1.5×10−2 5900 Böhme et al. (2008) M
1.2×10−2 5100 Haimi et al. (2006) M 522)
1.2×10−2 5000 Arp and Schmidt (2004) M 523)
1.4×10−2 4500 Fischer et al. (2004) M
7.2×10−3 3200 Bierwagen and Keller (2001) M
1.7×10−2 Miller and Stuart (2000) M 73)
2.3×10−2 Park et al. (1997) M
1.9×10−2 15000 Robbins et al. (1993) M 524)
1.4×10−2 Mackay et al. (2006c) V
1.0×10−1 3700 Fukuchi et al. (2002) V
1.6×10−2 Park et al. (1997) V
1.4×10−2 Mackay et al. (1993) V
2.0×10−2 Hwang et al. (1992) V
1.7×10−2 Guthrie (1973) V
1.7×10−2 Bagno et al. (1991) T 475)
1.8×10−2 Yaws (2003) X 259)
1.0×10−2 Dupeux et al. (2022) Q 260)
5.7×10−3 Keshavarz et al. (2022) Q
3.5×10−3 Duchowicz et al. (2020) Q 185)
1.3×10−3 Wang et al. (2017) Q 81) 239)
6.0×10−3 Wang et al. (2017) Q 81) 240)
1.5×10−2 Wang et al. (2017) Q 81) 241)
2.1×10−2 Gharagheizi et al. (2012) Q
4.9×10−3 Raventos-Duran et al. (2010) Q 243) 244)
6.2×10−3 Raventos-Duran et al. (2010) Q 245)
4.9×10−3 Raventos-Duran et al. (2010) Q 246)
3.9×10−3 Hilal et al. (2008) Q
1.3×10−2 Modarresi et al. (2007) Q 68)
6300 Kühne et al. (2005) Q
1.8×10−2 Yaffe et al. (2003) Q 249) 250)
1.4×10−2 English and Carroll (2001) Q 231) 232)
1.1×10−2 Katritzky et al. (1998) Q
8.6×10−4 Nirmalakhandan et al. (1997) Q
4.3×10−3 Suzuki et al. (1992) Q 233)
1.7×10−2 Duchowicz et al. (2020) ? 21) 186)
6000 Kühne et al. (2005) ?
1.8×10−2 Yaws (1999) ? 21)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Arp, H. P. H. & Schmidt, T. C.: Air–water transfer of MTBE, its degradation products, and alternative fuel oxygenates: the role of temperature, Environ. Sci. Technol., 38, 5405–5412, doi:10.1021/ES049286O (2004).
  • Bagno, A., Lucchini, V., & Scorrano, G.: Thermodynamics of protonation of ketones and esters and energies of hydration of their conjugate acids, J. Phys. Chem., 95, 345–352, doi:10.1021/J100154A063 (1991).
  • Bierwagen, B. G. & Keller, A. A.: Measurement of Henry’s law constant for methyl tert-butyl ether using solid-phase microextraction, Environ. Toxicol. Chem., 20, 1625–1629, doi:10.1002/ETC.5620200802 (2001).
  • Böhme, A., Paschke, A., Vrbka, P., Dohnal, V., & Schüürmann, G.: Determination of temperature-dependent Henry’s law constant of four oxygenated solutes in water using headspace solid-phase microextraction technique, J. Chem. Eng. Data, 53, 2873–2877, doi:10.1021/JE800623X (2008).
  • Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Falabella, J. B. & Teja, A. S.: Air–water partitioning of gasoline components in the presence of sodium chloride, Energy Fuels, 22, 398–401, doi:10.1021/EF700513K (2008).
  • Fischer, A., Müller, M., & Klasmeier, J.: Determination of Henry’s law constant for methyl tert-butyl ether (MTBE) at groundwater temperatures, Chemosphere, 54, 689–694, doi:10.1016/J.CHEMOSPHERE.2003.08.025 (2004).
  • Fukuchi, K., Miyoshi, K., Watanabe, T., Yonezawa, S., & Arai, Y.: Measurement and correlation of infinite dilution activity coefficients of alkanol or ether in aqueous solution, Fluid Phase Equilib., 194-197, 937–945, doi:10.1016/S0378-3812(01)00675-6 (2002).
  • Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
  • Guthrie, J. P.: Hydration of carboxylic acids and esters. Evaluation of the free energy change for addition of water to acetic and formic acids and their methyl esters, J. Am. Chem. Soc., 95, 6999–7003, doi:10.1021/JA00802A021 (1973).
  • Haimi, P., Uusi-Kyyny, P., Pokki, J.-P., Aittamaa, J., & Keskinen, K. I.: Infinite dilution activity coefficient measurements by inert gas stripping method, Fluid Phase Equilib., 243, 126–132, doi:10.1016/J.FLUID.2006.02.022 (2006).
  • Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
  • Hwang, I.-C., Kwak, H.-Y., & Park, S.-J.: Determination and prediction of Kow and dimensionless Henry’s constant (H) for 6 ether compounds at several temperatures, J. Ind. Eng. Chem., 16, 629–633, doi:10.1016/J.JIEC.2010.03.003 (2010).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton, ISBN 0873719735 (1993).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Oxygen Containing Compounds, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006c).
  • Miller, M. E. & Stuart, J. D.: Measurement of aqueous Henry’s law constants for oxygenates and aromatics found in gasolines by the static headspace method, Anal. Chem., 72, 622–625, doi:10.1021/AC990757C (2000).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N., Brennan, R. A., & Speece, R. E.: Predicting Henry’s law constant and the effect of temperature on Henry’s law constant, Wat. Res., 31, 1471–1481, doi:10.1016/S0043-1354(96)00395-8 (1997).
  • Park, S.-J., Han, S.-D., & Ryu, S.-A.: Measurement of air/water partition coefficient (Henry’s law constant) by using EPICS method and their relationship with vapor pressure and water solubility, J. Korean Inst. Chem. Eng., 35, 915–920 (1997).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Robbins, G. A., Wang, S., & Stuart, J. D.: Using the headspace method to determine Henry’s law constants, Anal. Chem., 65, 3113–3118, doi:10.1021/AC00069A026 (1993).
  • Schwardt, A., Dahmke, A., & Köber, R.: Henry’s law constants of volatile organic compounds between 0 and 95C – Data compilation and complementation in context of urban temperature increases of the subsurface, Chemosphere, 272, 129 858, doi:10.1016/J.CHEMOSPHERE.2021.129858 (2021).
  • Sieg, K., Starokozheva, E., Schmidt, M. U., & Püttmann, W.: Inverse temperature dependence of Henry’s law coefficients for volatile organic compounds in supercooled water, Chemosphere, 77, 8–14, doi:10.1016/J.CHEMOSPHERE.2009.06.028 (2009).
  • Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Zhang, W., Huang, L., Yang, C., & Ying, W.: Experimental method for estimating Henry’s law constant of volatile organic compound, Asian J. Chem., 25, 2647–2650, doi:10.14233/AJCHEM.2013.13584 (2013).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
11) Measured at high temperature and extrapolated to T = 298.15 K.
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
33) Fitting the temperature dependence dlnH/d(1/T) produced a low correlation coefficient (r2 < 0.9). The data should be treated with caution.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
73) Value at T = 296 K.
81) Value at T = 288 K.
185) Value from the validation set for checking whether the model is satisfactory for compounds that are absent from the training set.
186) Experimental value, extracted from HENRYWIN.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
232) Value from the training dataset.
233) Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details.
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
243) Value from the training dataset.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
259) Value given here as quoted by Dupeux et al. (2022).
260) Calculated using the COSMO-RS method.
326) Using the theoretical initial concentration (H0); see Zhang et al. (2013) for details.
327) Average of all duplicates (H1); see Zhang et al. (2013) for details.
328) Sieg et al. (2009) also provide data for supercooled water. Here, only data above 0 °C were used to calculate the temperature dependence.
340) Values for salt solutions are also available from this reference.
475) Calculated under the assumption that ∆G and ∆H are based on [mol L−1] and [atm] as the standard states.
521) Hwang et al. (2010) present regression parameters in their Table 6 and values extrapolated to 298.15 K in their Table 5. However, I was not able to reproduce their calculation. The data shown here are from my own regression of the measured data between 318.15 K and 333.15 K.
522) The data from Haimi et al. (2006) were fitted to the three-parameter equation: Hscp= exp( 752.39274 −29351.83448/T −115.55407 ln(T)) mol m−3 Pa−1, with T in K.
523) Different types of Henry's law constants of Arp and Schmidt (2004) are inconsistent, with 5 % difference.
524) The data from Robbins et al. (1993) were fitted to the three-parameter equation: Hscp= exp( −4264.16032 +202439.46180/T +628.54371 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *