When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | CHClCHCl |
TRIVIAL NAME:
|
trans-1,2-dichloroethene
|
CAS RN: | 156-60-5 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | KFUSEUYYWQURPO-OWOJBTEDSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
9.9×10−4 |
3600 |
Schwardt et al. (2021) |
L |
1)
|
1.0×10−3 |
3600 |
Burkholder et al. (2019) |
L |
|
1.0×10−3 |
3600 |
Burkholder et al. (2015) |
L |
|
1.0×10−3 |
3900 |
Brockbank (2013) |
L |
|
1.0×10−3 |
3500 |
Warneck (2007) |
L |
|
1.1×10−3 |
4200 |
Fogg and Sangster (2003) |
L |
|
9.0×10−4 |
4100 |
Staudinger and Roberts (2001) |
L |
|
9.0×10−4 |
4100 |
Staudinger and Roberts (1996) |
L |
|
9.2×10−4 |
2600 |
Schwardt et al. (2021) |
M |
11)
690)
|
1.0×10−3 |
4000 |
Hiatt (2013) |
M |
|
1.0×10−3 |
3500 |
Shimotori and Arnold (2003) |
M |
|
1.6×10−3 |
|
Ryu and Park (1999) |
M |
|
1.3×10−3 |
|
Hovorka and Dohnal (1997) |
M |
12)
|
1.1×10−3 |
2200 |
Kondoh and Nakajima (1997) |
M |
|
1.8×10−3 |
6200 |
Park et al. (1997) |
M |
|
9.3×10−4 |
4900 |
Khalfaoui and Newsham (1994b) |
M |
691)
|
9.8×10−4 |
3400 |
Hansen et al. (1993) |
M |
282)
|
1.0×10−3 |
4200 |
Wright et al. (1992) |
M |
692)
|
1.0×10−3 |
3700 |
Tse et al. (1992) |
M |
|
9.7×10−4 |
5000 |
Cooling et al. (1992) |
M |
693)
|
8.4×10−4 |
4800 |
Bissonette et al. (1990) |
M |
|
9.9×10−4 |
3000 |
Ashworth et al. (1988) |
M |
279)
688)
|
1.1×10−3 |
4200 |
Gossett (1987) |
M |
|
1.1×10−3 |
|
Yurteri et al. (1987) |
M |
12)
|
7.0×10−4 |
5400 |
Ervin et al. (1980) |
M |
|
1.9×10−3 |
|
Warner et al. (1980) |
M |
|
8.1×10−4 |
|
Sato and Nakajima (1979b) |
M |
14)
|
1.5×10−3 |
|
Mackay et al. (2006b) |
V |
|
1.5×10−3 |
|
Park et al. (1997) |
V |
|
1.5×10−3 |
|
Mackay et al. (1993) |
V |
|
1.5×10−3 |
|
Hwang et al. (1992) |
V |
|
1.5×10−3 |
|
Mackay and Shiu (1981) |
V |
|
2.4×10−3 |
|
Warner et al. (1980) |
V |
|
1.5×10−3 |
|
Dilling (1977) |
V |
|
1.5×10−3 |
|
Hine and Mookerjee (1975) |
V |
|
1.5×10−3 |
|
Yaws (2003) |
X |
238)
|
1.9×10−3 |
1700 |
Goldstein (1982) |
X |
299)
|
1.5×10−3 |
|
Ryan et al. (1988) |
C |
|
1.9×10−3 |
|
Shen (1982) |
C |
|
1.8×10−3 |
|
Wang et al. (2017) |
Q |
81)
239)
315)
|
4.9×10−4 |
|
Wang et al. (2017) |
Q |
81)
240)
315)
|
1.1×10−3 |
|
Wang et al. (2017) |
Q |
81)
241)
315)
|
2.1×10−3 |
|
Gharagheizi et al. (2012) |
Q |
|
1.4×10−3 |
|
Gharagheizi et al. (2010) |
Q |
247)
|
2.3×10−3 |
|
Modarresi et al. (2007) |
Q |
68)
|
|
3300 |
Kühne et al. (2005) |
Q |
|
2.2×10−3 |
|
Yao et al. (2002) |
Q |
230)
|
2.3×10−3 |
|
English and Carroll (2001) |
Q |
231)
232)
|
1.0×10−3 |
|
Mackay et al. (2006b) |
? |
|
|
4300 |
Kühne et al. (2005) |
? |
|
1.5×10−3 |
|
Yaws (1999) |
? |
21)
|
8.4×10−4 |
|
Abraham and Weathersby (1994) |
? |
21)
|
1.0×10−3 |
|
Mackay et al. (1993) |
? |
|
1.5×10−3 |
|
Yaws and Yang (1992) |
? |
21)
|
1.5×10−3 |
|
Abraham et al. (1990) |
? |
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
-
Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
-
Ashworth, R. A., Howe, G. B., Mullins, M. E., & Rogers, T. N.: Air–water partitioning coefficients of organics in dilute aqueous solutions, J. Hazard. Mater., 18, 25–36, doi:10.1016/0304-3894(88)85057-X (1988).
-
Bissonette, E. M., Westrick, J. J., & Morand, J. M.: Determination of Henry’s coefficient for volatile organic compounds in dilute aqueous systems, in: Proceedings of the Annual Conference of the American Water Works Association, Cincinnati, OH, June 17–21, pp. 1913–1922 (1990).
-
Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
-
Cooling, M. R., Khalfaoui, B., & Newsham, D. M. T.: Phase equilibria in very dilute mixtures of water and unsaturated chlorinated hydrocarbons and of water and benzene, Fluid Phase Equilib., 81, 217–229, doi:10.1016/0378-3812(92)85153-Y (1992).
-
Dilling, W. L.: Interphase transfer processes. II. Evaporation rates of chloro methanes, ethanes, ethylenes, propanes, and propylenes from dilute aqueous solutions. Comparisons with theoretical predictions, Environ. Sci. Technol., 11, 405–409, doi:10.1021/ES60127A009 (1977).
-
English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
-
Ervin, A. L., Mangone, M. A., & Singley, J. E.: Trace organics removal by air stripping, in: Proceedings of the Annual Conference of the American Water Works Association, pp. 507–530 (1980).
-
Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
-
Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
-
Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
-
Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry’s law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA (1982).
-
Gossett, J. M.: Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons, Environ. Sci. Technol., 21, 202–208, doi:10.1021/ES00156A012 (1987).
-
Hansen, K. C., Zhou, Z., Yaws, C. L., & Aminabhavi, T. M.: Determination of Henry’s law constants of organics in dilute aqueous solutions, J. Chem. Eng. Data, 38, 546–550, doi:10.1021/JE00012A017 (1993).
-
Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
-
Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
-
Hovorka, Š. & Dohnal, V.: Determination of air–water partitioning of volatile halogenated hydrocarbons by the inert gas stripping method, J. Chem. Eng. Data, 42, 924–933, doi:10.1021/JE970046G (1997).
-
Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
-
Khalfaoui, B. & Newsham, D. M. T.: Determination of infinite dilution activity coefficients and second virial coefficients using gas-liquid chromatography I. The dilute mixtures of water and unsaturated chlorinated hydrocarbons and of water and benzene, J. Chromatogr. A, 673, 85–92, doi:10.1016/0021-9673(94)87060-8 (1994b).
-
Kondoh, H. & Nakajima, T.: Optimization of headspace cryofocus gas chromatography/mass spectrometry for the analysis of 54 volatile organic compounds, and the measurement of their Henry’s constants, J. Environ. Chem., 7, 81–89, doi:10.5985/JEC.7.81 (1997).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Mackay, D. & Shiu, W. Y.: A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, doi:10.1063/1.555654 (1981).
-
Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton, ISBN 0873719735 (1993).
-
Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. II of Halogenated Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006b).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Park, S.-J., Han, S.-D., & Ryu, S.-A.: Measurement of air/water partition coefficient (Henry’s law constant) by using EPICS method and their relationship with vapor pressure and water solubility, J. Korean Inst. Chem. Eng., 35, 915–920 (1997).
-
Ryan, J. A., Bell, R. M., Davidson, J. M., & O’Connor, G. A.: Plant uptake of non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323, doi:10.1016/0045-6535(88)90142-7 (1988).
-
Ryu, S.-A. & Park, S.-J.: A rapid determination method of the air/water partition coefficient and its application, Fluid Phase Equilib., 161, 295–304, doi:10.1016/S0378-3812(99)00193-4 (1999).
-
Sato, A. & Nakajima, T.: A structure-activity relationship of some chlorinated hydrocarbons, Arch. Environ. Health, 34, 69–75, doi:10.1080/00039896.1979.10667371 (1979b).
-
Schwardt, A., Dahmke, A., & Köber, R.: Henry’s law constants of volatile organic compounds between 0 and 95∘C – Data compilation and complementation in context of urban temperature increases of the subsurface, Chemosphere, 272, 129 858, doi:10.1016/J.CHEMOSPHERE.2021.129858 (2021).
-
Shen, T. T.: Estimation of organic compound emissions from waste lagoons, J. Air Pollut. Control Assoc., 32, 79–82, doi:10.1080/00022470.1982.10465374 (1982).
-
Shimotori, T. & Arnold, W. A.: Measurement and estimation of Henry’s law constants of chlorinated ethylenes in aqueous surfactant solutions, J. Chem. Eng. Data, 48, 253–261, doi:10.1021/JE025553Z (2003).
-
Staudinger, J. & Roberts, P. V.: A critical review of Henry’s law constants for environmental applications, Crit. Rev. Environ. Sci. Technol., 26, 205–297, doi:10.1080/10643389609388492 (1996).
-
Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
-
Tse, G., Orbey, H., & Sandler, S. I.: Infinite dilution activity coefficients and Henry’s law coefficients of some priority water pollutants determined by a relative gas chromatographic method, Environ. Sci. Technol., 26, 2017–2022, doi:10.1021/ES00034A021 (1992).
-
Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
-
Warneck, P.: A review of Henry’s law coefficients for chlorine-containing C1 and C2 hydrocarbons, Chemosphere, 69, 347–361, doi:10.1016/J.CHEMOSPHERE.2007.04.088 (2007).
-
Warner, H. P., Cohen, J. M., & Ireland, J. C.: Determination of Henry’s law constants of selected priority pollutants, Tech. rep., U.S. EPA, Municipal Environmental Research Laboratory, Wastewater Research Division, Cincinnati, Ohio, 45268, USA (1980).
-
Wright, D. A., Sandler, S. I., & DeVoll, D.: Infinite dilution activity coefficients and solubilities of halogenated hydrocarbons in water at ambient temperatures, Environ. Sci. Technol., 26, 1828–1831, doi:10.1021/ES00033A018 (1992).
-
Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
-
Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
-
Yurteri, C., Ryan, D. F., Callow, J. J., & Gurol, M. D.: The effect of chemical composition of water on Henry’s law constant, J. Water Pollut. Control Fed., 59, 950–956 (1987).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
1) |
A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented. |
11) |
Measured at high temperature and extrapolated to T⊖ = 298.15 K. |
12) |
Value at T = 293 K. |
14) |
Value at T = 310 K. |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
81) |
Value at T = 288 K. |
230) |
Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm. |
231) |
English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown. |
232) |
Value from the training dataset. |
238) |
Value given here as quoted by Gharagheizi et al. (2010). |
239) |
Calculated using linear free energy relationships (LFERs). |
240) |
Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC). |
241) |
Calculated using COSMOtherm. |
247) |
Calculated using a combination of a group contribution method and neural networks. |
279) |
Data are taken from the report by Howe et al. (1987). |
282) |
The same data were also published in Hansen et al. (1995). |
299) |
Value given here as quoted by Staudinger and Roberts (1996). |
315) |
Wang et al. (2017) provide separate data for cis and trans. However, since both isomers are identified by the same SMILES string in their study, it is unclear how the stereochemistry has been taken into account. |
688) |
A typo in Ashworth et al. (1988) has been corrected by Howe et al. (1987). |
690) |
The data from Schwardt et al. (2021) were fitted to the three-parameter equation: Hscp= exp( −6.68864 +2211.35284/T −1.35565 ln(T)) mol m−3 Pa−1, with T in K. |
691) |
The data from Khalfaoui and Newsham (1994b) were fitted to the three-parameter equation: Hscp= exp( −593.56757 +30300.79738/T +85.11672 ln(T)) mol m−3 Pa−1, with T in K. |
692) |
The data from Wright et al. (1992) were fitted to the three-parameter equation: Hscp= exp( −294.54970 +16409.35487/T +40.82700 ln(T)) mol m−3 Pa−1, with T in K. |
693) |
The data from Cooling et al. (1992) were fitted to the three-parameter equation: Hscp= exp( −511.78322 +26710.11950/T +72.88403 ln(T)) mol m−3 Pa−1, with T in K. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|