When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | C2HBrClF3 |
TRIVIAL NAME:
|
halothane
|
CAS RN: | 151-67-7 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | BCQZXOMGPXTTIC-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
5.6×10−4 |
4700 |
Fogg and Sangster (2003) |
L |
|
3.1×10−4 |
|
Steward et al. (1973) |
L |
14)
|
5.3×10−4 |
4200 |
Allott et al. (1973) |
L |
|
2.8×10−4 |
|
Guitart et al. (1989) |
M |
14)
|
3.3×10−4 |
|
Lerman et al. (1983) |
M |
14)
|
5.3×10−4 |
5000 |
Smith et al. (1981b) |
M |
|
3.2×10−4 |
|
Stoelting and Longshore (1972) |
M |
14)
|
3.4×10−4 |
|
Saidman et al. (1966) |
M |
14)
|
4.9×10−4 |
|
Yaws (2003) |
X |
80)
238)
|
4.2×10−4 |
|
Keshavarz et al. (2022) |
Q |
|
2.7×10−3 |
|
Duchowicz et al. (2020) |
Q |
185)
|
4.8×10−4 |
|
Gharagheizi et al. (2010) |
Q |
247)
|
8.8×10−4 |
|
Hilal et al. (2008) |
Q |
|
1.7×10−4 |
|
Modarresi et al. (2007) |
Q |
68)
|
|
4100 |
Kühne et al. (2005) |
Q |
|
1.0×10−3 |
|
English and Carroll (2001) |
Q |
231)
232)
|
4.9×10−4 |
|
Duchowicz et al. (2020) |
? |
21)
186)
|
4.9×10−4 |
|
HSDB (2015) |
? |
421)
|
|
5000 |
Kühne et al. (2005) |
? |
|
4.7×10−4 |
|
Yaws (1999) |
? |
21)
80)
|
3.4×10−4 |
|
Abraham and Weathersby (1994) |
? |
21)
|
4.8×10−4 |
|
Abraham et al. (1990) |
? |
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
-
Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
-
Allott, P. R., Steward, A., Flook, V., & Mapleson, W. W.: Variation with temperature of the solubilities of inhaled anaesthestics in water, oil and biological media, Br. J. Anaesth., 45, 294–300, doi:10.1093/BJA/45.3.294 (1973).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
-
Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
-
Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
-
Guitart, R., Puigdemont, F., & Arboix, M.: Rapid headspace gas chromatographic method for the determination of liquid/gas partition coefficients, J. Chromatogr., 491, 271–280, doi:10.1016/S0378-4347(00)82845-5 (1989).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
HSDB: Hazardous Substances Data Bank, TOXicology data NETwork (TOXNET), National Library of Medicine (US), URL https://www.nlm.nih.gov/toxnet/Accessing_HSDB_Content_from_PubChem.html (2015).
-
Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Lerman, J., Willis, M. M., Gregory, G. A., & Eger, E. I.: Osmolarity determines the solubility of anesthetics in aqueous solutions at 37∘C, Anesthesiology, 59, 554–558, doi:10.1097/00000542-198312000-00013 (1983).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Saidman, L. J., Eger, E. I., Munson, E. S., & Severinghaus, J. W.: A method for determining solubility of anesthetics utilizing the Scholander apparatus, Anesthesiology, 27, 180–184, doi:10.1097/00000542-196603000-00011 (1966).
-
Smith, R. A., Porter, E. G., & Miller, K. W.: The solubility of anesthetic gases in lipid bilayers, Biochim. Biophys. Acta - Biomembranes, 645, 327–338 (1981b).
-
Steward, A., Allott, P. R., Cowles, A. L., & Mapleson, W. W.: Solubility coefficients for inhaled anaesthetics for water, oil and biological media, Br. J. Anaesth., 45, 282–293, doi:10.1093/BJA/45.3.282 (1973).
-
Stoelting, R. K. & Longshore, R. E.: The effects of temperature on fluroxene, halothane, and methoxyflurane blood-gas and cerebrospinal fluid-gas partition coefficients, Anesthesiology, 36, 503–505, doi:10.1097/00000542-197205000-00018 (1972).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
14) |
Value at T = 310 K. |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
80) |
Value at T = 297 K. |
185) |
Value from the validation set for checking whether the model is satisfactory for compounds that are absent from the training set. |
186) |
Experimental value, extracted from HENRYWIN. |
231) |
English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown. |
232) |
Value from the training dataset. |
238) |
Value given here as quoted by Gharagheizi et al. (2010). |
247) |
Calculated using a combination of a group contribution method and neural networks. |
421) |
HSDB (2015) refers to Abraham et al. (1994b) as the source, but this value cannot be found there. Maybe the value is taken from Abraham et al. (1990). |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|