MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsInorganic speciesHydrogen (H) → hydrogen

FORMULA:H2
CAS RN:1333-74-0
STRUCTURE
(FROM NIST):
InChIKey:UFHFLCQGNIYNRP-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
7.8×10−6 530 Fernández-Prini et al. (2003) L 3)
7.7×10−6 490 Young (1981a) L 1)
7.7×10−6 490 Wilhelm et al. (1977) L
7.8×10−6 600 Himmelblau (1960) L 1)
7.8×10−6 620 Schmidt (1979) M 33) 34)
7.7×10−6 480 Gordon et al. (1977) M 35)
7.7×10−6 520 Crozier and Yamamoto (1974) M 36)
7.2×10−6 Longo et al. (1970) M 14)
7.2×10−6 Power and Stegall (1970) M 14)
Shoor et al. (1969) M 37)
7.5×10−6 Ruetschi and Amlie (1966) M 38)
7.8×10−6 510 Morrison and Billett (1952) M 39)
7.8×10−6 540 Geffcken (1904) M
7.7×10−6 1500 Braun (1900) M 40)
7.7×10−6 500 Winkler (1891a) M 41)
7.5×10−6 550 Bohr and Bock (1891) M
7.8×10−6 610 Timofejew (1890) M
8.5×10−6 20 Bunsen (1855a) M 42) 43)
7.8×10−6 500 Wauchope and Haque (1972) V
7.7×10−6 Hine and Weimar (1965) R
8.3×10−6 Pierotti (1965) T
6.4×10−6 Hayer et al. (2022) Q 20)
7.7×10−6 490 Yaws et al. (1999) ? 21)
7.7×10−6 Abraham and Weathersby (1994) ? 21)
7.7×10−6 500 Dean and Lange (1999) ? 23) 44)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
  • Bohr, C. & Bock, J.: Bestimmung der Absorption einiger Gase in Wasser bei den Temperaturen zwischen 0 und 100, Ann. Phys., 280, 318–343, doi:10.1002/ANDP.18912801010 (1891).
  • Braun, L.: Über die Absorption von Stickstoff und von Wasserstoff in wässerigen Lösungen verschieden dissociierter Stoffe, Z. Phys. Chem., 33U, 721–739, doi:10.1515/ZPCH-1900-3349 (1900).
  • Bunsen, R.: Ueber das Gesetz der Gasabsorption, Liebigs Ann. Chem., 93, 1–50, doi:10.1002/JLAC.18550930102 (1855a).
  • Crozier, T. E. & Yamamoto, S.: Solubility of hydrogen in water, seawater and NaCl-solutions, J. Chem. Eng. Data, 19, 242–244, doi:10.1021/JE60062A007 (1974).
  • Dean, J. A. & Lange, N. A.: Lange’s Handbook of Chemistry, Fifteenth Edition, McGraw-Hill, Inc., ISBN 9780070163843 (1999).
  • Fernández-Prini, R., Alvarez, J. L., & Harvey, A. H.: Henry’s constants and vapor-liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures, J. Phys. Chem. Ref. Data, 32, 903–916, doi:10.1063/1.1564818 (2003).
  • Geffcken, G.: Beiträge zur Kenntnis der Löslichkeitsbeeinflussung, Z. Phys. Chem., 49, 257–302, doi:10.1515/ZPCH-1904-4925 (1904).
  • Gordon, L. I., Cohen, Y., & Standley, D. R.: The solubility of molecular hydrogen in seawater, Deep-Sea Res., 24, 937–941, doi:10.1016/0146-6291(77)90563-X (1977).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Himmelblau, D. M.: Solubilities of inert gases in water. 0C. to near the critical point of water, J. Chem. Eng. Data, 5, 10–15, doi:10.1021/JE60005A003 (1960).
  • Hine, J. & Weimar, Jr., R. D.: Carbon basicity, J. Am. Chem. Soc., 87, 3387–3396, doi:10.1021/JA01093A018 (1965).
  • Longo, L. D., Delivoria-Papadopoulos, M., Power, G. G., Hill, E. P., & Forster, R. E.: Diffusion equilibration of inert gases between maternal and fetal placental capillaires, Am. J. Physiol., 219, 561–569, doi:10.1152/AJPLEGACY.1970.219.3.561 (1970).
  • Morrison, T. J. & Billett, F.: 730. The salting-out of non-electrolytes. Part II. The effect of variation in non-electrolyte, J. Chem. Soc., pp. 3819–3822, doi:10.1039/JR9520003819 (1952).
  • Pierotti, R. A.: Aqueous solutions of nonpolar gases, J. Phys. Chem., 69, 281–288, doi:10.1021/J100885A043 (1965).
  • Power, G. G. & Stegall, H.: Solubility of gases in human red blood cell ghosts, J. Appl. Physiol., 29, 145–149, doi:10.1152/JAPPL.1970.29.2.145 (1970).
  • Ruetschi, P. & Amlie, R. F.: Solubility of hydrogen in potassium hydroxide and sulfuric acid. Salting-out and hydration, J. Phys. Chem., 70, 718–723, doi:10.1021/J100875A018 (1966).
  • Schmidt, U.: The solubility of carbon monoxide and hydrogen in water and sea-water at partial pressures of about 105 atmospheres, Tellus, 31, 68–74, doi:10.1111/J.2153-3490.1979.TB00883.X (1979).
  • Shoor, S. K., Walker, Jr., R. D., & Gubbins, K. E.: Salting out of nonpolar gases in aqueous potassium hydroxide solutions, J. Phys. Chem., 73, 312–317, doi:10.1021/J100722A006 (1969).
  • Timofejew, W.: Über die Absorption von Wasserstoff und Sauerstoff in Wasser und Alkohol, Z. Phys. Chem., 6, 141–152, doi:10.1515/ZPCH-1890-0614 (1890).
  • Wauchope, R. D. & Haque, R.: Aqueous solutions of nonpolar compounds. Heat-capacity effects, Can. J. Chem., 50, 133–138, doi:10.1139/V72-022 (1972).
  • Wilhelm, E., Battino, R., & Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, doi:10.1021/CR60306A003 (1977).
  • Winkler, L. W.: Die Löslichkeit der Gase in Wasser (erste Abhandlung), Ber. Dtsch. Chem. Ges., 24, 89–101, doi:10.1002/CBER.18910240116 (1891a).
  • Yaws, C. L., Hopper, J. R., Wang, X., Rathinsamy, A. K., & Pike, R. W.: Calculating solubility & Henry’s law constants for gases in water, Chem. Eng., pp. 102–105 (1999).
  • Young, C. L.: IUPAC Solubility Data Series, Volume 5/6, Hydrogen and Deuterium, Pergamon Press, Oxford, ISBN 0080239277 (1981a).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
3) The vapor pressure for water from Wagner and Pruss (1993) was used to calculate Hs.
14) Value at T = 310 K.
20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
23) The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by Buck (1981). The quantities A and α from Dean and Lange (1999) were assumed to be identical.
33) Fitting the temperature dependence dlnH/d(1/T) produced a low correlation coefficient (r2 < 0.9). The data should be treated with caution.
34) Data digitized from Figs. 2 and 3 in Schmidt (1979).
35) The data from Gordon et al. (1977) were fitted to the three-parameter equation: Hscp= exp( −158.95051 +6959.76267/T +21.73478 ln(T)) mol m−3 Pa−1, with T in K.
36) The data from Crozier and Yamamoto (1974) were fitted to the three-parameter equation: Hscp= exp( −129.44163 +5676.58091/T +17.31002 ln(T)) mol m−3 Pa−1, with T in K.
37) The data presented for hydrogen in Table II of Shoor et al. (1969) appear to be incorrect and are not reproduced here.
38) Value at T = 303 K.
39) The data from Morrison and Billett (1952) were fitted to the three-parameter equation: Hscp= exp( −94.36490 +4110.23880/T +12.07743 ln(T)) mol m−3 Pa−1, with T in K.
40) The data from Braun (1900) were fitted to the three-parameter equation: Hscp= exp( 171.59451 −6856.02728/T −28.14739 ln(T)) mol m−3 Pa−1, with T in K.
41) The data from Winkler (1891a) were fitted to the three-parameter equation: Hscp= exp( −103.47250 +4506.63123/T +13.44160 ln(T)) mol m−3 Pa−1, with T in K.
42) Fitting the temperature dependence dlnH/d(1/T) produced a very low correlation coefficient (r2 < 0.5). The data should be treated with caution.
43) The paper by Bunsen (1855a) was written in German. English versions with the same data were published by Bunsen (1855b) and Bunsen (1855c).
44) The data from Dean and Lange (1999) were fitted to the three-parameter equation: Hscp= exp( −98.78036 +4298.15060/T +12.74131 ln(T)) mol m−3 Pa−1, with T in K.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *