When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | C2Cl4 |
TRIVIAL NAME:
|
tetrachloroethylene
|
CAS RN: | 127-18-4 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | CYTYCFOTNPOANT-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
5.7×10−4 |
4700 |
Schwardt et al. (2021) |
L |
1)
|
5.5×10−4 |
4500 |
Burkholder et al. (2019) |
L |
|
4.6×10−4 |
4400 |
Burkholder et al. (2019) |
L |
71)
|
5.5×10−4 |
4500 |
Burkholder et al. (2015) |
L |
|
4.6×10−4 |
4400 |
Burkholder et al. (2015) |
L |
71)
|
5.6×10−4 |
4700 |
Brockbank (2013) |
L |
1)
|
6.2×10−4 |
4500 |
Warneck (2007) |
L |
|
6.0×10−4 |
4200 |
Fogg and Sangster (2003) |
L |
|
5.9×10−4 |
4800 |
Staudinger and Roberts (2001) |
L |
|
5.8×10−4 |
4800 |
Staudinger and Roberts (1996) |
L |
|
4.3×10−4 |
|
Mackay and Shiu (1981) |
L |
|
5.8×10−4 |
4500 |
Schwardt et al. (2021) |
M |
701)
|
9.9×10−4 |
4600 |
Hiatt (2013) |
M |
|
6.2×10−4 |
4200 |
Chen et al. (2012) |
M |
|
5.8×10−4 |
4200 |
Shimotori and Arnold (2003) |
M |
|
4.1×10−4 |
5300 |
Moore (2000) |
M |
71)
|
6.0×10−4 |
4100 |
Vane and Giroux (2000) |
M |
|
4.8×10−4 |
4400 |
Knauss et al. (2000) |
M |
702)
|
5.3×10−4 |
|
Ryu and Park (1999) |
M |
|
8.6×10−4 |
|
Dohnal and Hovorka (1999) |
M |
12)
|
6.2×10−4 |
|
Chiang et al. (1998) |
M |
12)
|
7.8×10−4 |
|
Peng and Wan (1998) |
M |
|
4.7×10−4 |
4100 |
Peng and Wan (1998) |
M |
71)
|
6.1×10−4 |
4200 |
Peng and Wan (1997) |
M |
|
8.4×10−4 |
|
Hovorka and Dohnal (1997) |
M |
12)
|
6.9×10−4 |
2200 |
Kondoh and Nakajima (1997) |
M |
|
5.5×10−4 |
4200 |
Park et al. (1997) |
M |
|
6.9×10−4 |
4800 |
Dewulf et al. (1995) |
M |
|
5.8×10−4 |
5200 |
Robbins et al. (1993) |
M |
703)
|
6.3×10−4 |
|
Hoff et al. (1993) |
M |
|
6.3×10−4 |
|
Li et al. (1993) |
M |
|
8.1×10−4 |
2100 |
Kolb et al. (1992) |
M |
33)
278)
|
5.9×10−4 |
5500 |
Tancrède and Yanagisawa (1990) |
M |
|
6.2×10−4 |
5300 |
Bissonette et al. (1990) |
M |
|
5.4×10−4 |
4400 |
Ashworth et al. (1988) |
M |
279)
|
5.6×10−4 |
4900 |
Gossett (1987) |
M |
|
5.4×10−4 |
4400 |
Munz and Roberts (1987) |
M |
|
7.7×10−4 |
|
Hellmann (1987) |
M |
88)
|
7.5×10−4 |
|
Yurteri et al. (1987) |
M |
12)
|
6.5×10−4 |
4600 |
Gossett et al. (1985) |
M |
|
5.7×10−4 |
5100 |
Lincoff and Gossett (1984) |
M |
|
6.1×10−4 |
4700 |
Leighton and Calo (1981) |
M |
|
5.7×10−4 |
5200 |
Ervin et al. (1980) |
M |
|
3.4×10−4 |
|
Warner et al. (1980) |
M |
|
1.1×10−3 |
4300 |
Gossett (1980) |
M |
|
1.7×10−4 |
|
Sato and Nakajima (1979b) |
M |
14)
|
5.0×10−4 |
|
Pearson and McConnell (1975) |
M |
12)
651)
|
3.7×10−4 |
|
Mackay et al. (2006b) |
V |
|
3.4×10−4 |
|
Park et al. (1997) |
V |
|
3.7×10−4 |
|
Mackay et al. (1993) |
V |
|
3.6×10−4 |
|
Hwang et al. (1992) |
V |
|
9.1×10−4 |
|
Addison et al. (1983) |
V |
|
3.5×10−4 |
|
Warner et al. (1980) |
V |
|
3.4×10−4 |
|
Dilling (1977) |
V |
653)
|
4.0×10−4 |
|
Dilling (1977) |
V |
12)
|
1.2×10−3 |
|
Dilling (1977) |
V |
154)
|
3.7×10−4 |
|
Hine and Mookerjee (1975) |
V |
|
9.8×10−4 |
|
Dilling et al. (1975) |
V |
|
3.6×10−4 |
|
Yaws (2003) |
X |
238)
|
3.6×10−4 |
1500 |
Goldstein (1982) |
X |
299)
|
6.3×10−4 |
|
Ryan et al. (1988) |
C |
|
3.4×10−4 |
|
Shen (1982) |
C |
|
8.1×10−4 |
|
Dilling (1977) |
C |
|
8.1×10−4 |
|
Dilling et al. (1975) |
C |
|
4.4×10−3 |
|
Wang et al. (2017) |
Q |
81)
239)
|
1.2×10−4 |
|
Wang et al. (2017) |
Q |
81)
240)
|
2.5×10−4 |
|
Wang et al. (2017) |
Q |
81)
241)
|
1.1×10−2 |
|
Gharagheizi et al. (2012) |
Q |
|
3.9×10−4 |
|
Gharagheizi et al. (2010) |
Q |
247)
|
1.7×10−4 |
|
Hilal et al. (2008) |
Q |
|
1.2×10−3 |
|
Modarresi et al. (2007) |
Q |
68)
|
|
3900 |
Kühne et al. (2005) |
Q |
|
5.6×10−4 |
|
Yaffe et al. (2003) |
Q |
249)
250)
|
3.1×10−4 |
|
English and Carroll (2001) |
Q |
231)
232)
|
9.9×10−5 |
|
Katritzky et al. (1998) |
Q |
|
8.8×10−4 |
|
Nirmalakhandan and Speece (1988) |
Q |
|
5.8×10−4 |
|
Mackay et al. (2006b) |
? |
|
|
5100 |
Kühne et al. (2005) |
? |
|
3.7×10−4 |
|
Yaws (1999) |
? |
21)
|
1.7×10−4 |
|
Abraham and Weathersby (1994) |
? |
21)
|
5.8×10−4 |
|
Mackay et al. (1993) |
? |
|
3.7×10−4 |
|
Yaws and Yang (1992) |
? |
21)
|
3.4×10−4 |
|
Abraham et al. (1990) |
? |
|
2.9×10−3 |
|
Chiou et al. (1980) |
? |
80)
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
-
Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
-
Addison, R. F., Paterson, S., & Mackay, D.: The predicted environmental distribution of some PCB replacements, Chemosphere, 12, 827–834, doi:10.1016/0045-6535(83)90148-0 (1983).
-
Ashworth, R. A., Howe, G. B., Mullins, M. E., & Rogers, T. N.: Air–water partitioning coefficients of organics in dilute aqueous solutions, J. Hazard. Mater., 18, 25–36, doi:10.1016/0304-3894(88)85057-X (1988).
-
Bissonette, E. M., Westrick, J. J., & Morand, J. M.: Determination of Henry’s coefficient for volatile organic compounds in dilute aqueous systems, in: Proceedings of the Annual Conference of the American Water Works Association, Cincinnati, OH, June 17–21, pp. 1913–1922 (1990).
-
Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
-
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
-
Chen, F., Freedman, D. L., Falta, R. W., & Murdoch, L. C.: Henry’s law constants of chlorinated solvents at elevated temperatures, Chemosphere, 86, 156–165, doi:10.1016/J.CHEMOSPHERE.2011.10.004 (2012).
-
Chiang, P.-C., Hung, C.-H., Mar, J. C., & Chang, E. E.: Henry’s constants and mass transfer coefficients of halogenated organic pollutants in an air stripping packed column, Wat. Sci. Tech., 38, 287–294 (1998).
-
Chiou, C. T., Freed, V. H., Peters, L. J., & Kohnert, R. L.: Evaporation of solutes from water, Environ. Int., 3, 231–236, doi:10.1016/0160-4120(80)90123-3 (1980).
-
Dewulf, J., Drijvers, D., & van Langenhove, H.: Measurement of Henry’s law constant as function of temperature and salinity for the low temperature range, Atmos. Environ., 29, 323–331, doi:10.1016/1352-2310(94)00256-K (1995).
-
Dilling, W. L.: Interphase transfer processes. II. Evaporation rates of chloro methanes, ethanes, ethylenes, propanes, and propylenes from dilute aqueous solutions. Comparisons with theoretical predictions, Environ. Sci. Technol., 11, 405–409, doi:10.1021/ES60127A009 (1977).
-
Dilling, W. L., Tefertiller, N. B., & Kallos, G. J.: Evaporation rates and reactivities of methylene chloride, chloroform, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and other chlorinated compounds in dilute aqueous solutions, Environ. Sci. Technol., 9, 833–838, doi:10.1021/ES60107A008 (1975).
-
Dohnal, V. & Hovorka, Š.: Exponential saturator: a novel gas-liquid partitioning technique for measurement of large limiting activity coefficients, Ind. Eng. Chem. Res., 38, 2036–2043, doi:10.1021/IE980743H (1999).
-
English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
-
Ervin, A. L., Mangone, M. A., & Singley, J. E.: Trace organics removal by air stripping, in: Proceedings of the Annual Conference of the American Water Works Association, pp. 507–530 (1980).
-
Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
-
Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
-
Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
-
Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry’s law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA (1982).
-
Gossett, J. M.: Packed tower air stripping of trichloroethylene from dilute aqueous solution, Final Report ESL-TR-81-38, Engineering and Services Laboratory, Tyndall Air Force Base, FL (1980).
-
Gossett, J. M.: Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons, Environ. Sci. Technol., 21, 202–208, doi:10.1021/ES00156A012 (1987).
-
Gossett, J. M., Cameron, C. E., Eckstrom, B. P., Goodman, C., & Lincoff, A. H.: Mass transfer coefficients and Henry’s constants for packed-tower air stripping of volatile organics: Measurements and Correlations, Final Report ESL-TR-85-18, Engineering and Services Laboratory, Tyndall Air Force Base, FL (1985).
-
Hellmann, H.: Model tests on volatilization of organic trace substances in surfaces waters, Fresenius J. Anal. Chem., 328, 475–479, doi:10.1007/BF00475967 (1987).
-
Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
-
Hoff, J. T., Mackay, D., Gillham, R., & Shiu, W. Y.: Partitioning of organic chemicals at the air–water interface in environmental systems, Environ. Sci. Technol., 27, 2174–2180, doi:10.1021/ES00047A026 (1993).
-
Hovorka, Š. & Dohnal, V.: Determination of air–water partitioning of volatile halogenated hydrocarbons by the inert gas stripping method, J. Chem. Eng. Data, 42, 924–933, doi:10.1021/JE970046G (1997).
-
Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
-
Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
-
Knauss, K. G., Dibley, M. J., Leif, R. N., Mew, D. A., & Aines, R. D.: The aqueous solubility of trichloroethene (TCE) and tetrachloroethene (PCE) as a function of temperature, Appl. Geochem., 15, 501–512, doi:10.1016/S0883-2927(99)00058-X (2000).
-
Kolb, B., Welter, C., & Bichler, C.: Determination of partition coefficients by automatic equilibrium headspace gas chromatography by vapor phase calibration, Chromatographia, 34, 235–240, doi:10.1007/BF02268351 (1992).
-
Kondoh, H. & Nakajima, T.: Optimization of headspace cryofocus gas chromatography/mass spectrometry for the analysis of 54 volatile organic compounds, and the measurement of their Henry’s constants, J. Environ. Chem., 7, 81–89, doi:10.5985/JEC.7.81 (1997).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Leighton, D. T. & Calo, J. M.: Distribution coefficients of chlorinated hydrocarbons in dilute air–water systems for groundwater contamination applications, J. Chem. Eng. Data, 26, 382–385, doi:10.1021/JE00026A010 (1981).
-
Li, J., Dallas, A. J., Eikens, D. I., Carr, P. W., Bergmann, D. L., Hait, M. J., & Eckert, C. A.: Measurement of large infinite dilution activity coefficients of nonelectrolytes in water by inert gas stripping and gas chromatography, Anal. Chem., 65, 3212–3218, doi:10.1021/AC00070A008 (1993).
-
Lincoff, A. H. & Gossett, J. M.: The determination of Henry’s law constant for volatile organics by equilibrium partitioning in closed systems, in: Gas transfer at water surfaces, edited by Brutsaert, W. & Jirka, G. H., pp. 17–25, D. Reidel Publishing Company, Dordrecht-Holland, doi:10.1007/978-94-017-1660-4_2 (1984).
-
Mackay, D. & Shiu, W. Y.: A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, doi:10.1063/1.555654 (1981).
-
Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton, ISBN 0873719735 (1993).
-
Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. II of Halogenated Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006b).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Moore, R. M.: The solubility of a suite of low molecular weight organochlorine compounds in seawater and implications for estimating the marine source of methyl chloride to the atmosphere, Chemosphere Global Change Sci., 2, 95–99, doi:10.1016/S1465-9972(99)00045-8 (2000).
-
Munz, C. & Roberts, P. V.: Air–water phase equilibria of volatile organic solutes, J. Am. Water Works Assoc., 79, 62–69, doi:10.1002/J.1551-8833.1987.TB02844.X (1987).
-
Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
-
Park, S.-J., Han, S.-D., & Ryu, S.-A.: Measurement of air/water partition coefficient (Henry’s law constant) by using EPICS method and their relationship with vapor pressure and water solubility, J. Korean Inst. Chem. Eng., 35, 915–920 (1997).
-
Pearson, C. R. & McConnell, G.: Chlorinated C1 and C2 hydrocarbons in the marine environment, Proc. R. Soc. Lond. B, 189, 305–332, doi:10.1098/RSPB.1975.0059 (1975).
-
Peng, J. & Wan, A.: Measurement of Henry’s constants of high-volatility organic compounds using a headspace autosampler, Environ. Sci. Technol., 31, 2998–3003, doi:10.1021/ES970240N (1997).
-
Peng, J. & Wan, A.: Effect of ionic strength on Henry’s constants of volatile organic compounds, Chemosphere, 36, 2731–2740, doi:10.1016/S0045-6535(97)10232-6 (1998).
-
Robbins, G. A., Wang, S., & Stuart, J. D.: Using the headspace method to determine Henry’s law constants, Anal. Chem., 65, 3113–3118, doi:10.1021/AC00069A026 (1993).
-
Ryan, J. A., Bell, R. M., Davidson, J. M., & O’Connor, G. A.: Plant uptake of non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323, doi:10.1016/0045-6535(88)90142-7 (1988).
-
Ryu, S.-A. & Park, S.-J.: A rapid determination method of the air/water partition coefficient and its application, Fluid Phase Equilib., 161, 295–304, doi:10.1016/S0378-3812(99)00193-4 (1999).
-
Sato, A. & Nakajima, T.: A structure-activity relationship of some chlorinated hydrocarbons, Arch. Environ. Health, 34, 69–75, doi:10.1080/00039896.1979.10667371 (1979b).
-
Schwardt, A., Dahmke, A., & Köber, R.: Henry’s law constants of volatile organic compounds between 0 and 95∘C – Data compilation and complementation in context of urban temperature increases of the subsurface, Chemosphere, 272, 129 858, doi:10.1016/J.CHEMOSPHERE.2021.129858 (2021).
-
Shen, T. T.: Estimation of organic compound emissions from waste lagoons, J. Air Pollut. Control Assoc., 32, 79–82, doi:10.1080/00022470.1982.10465374 (1982).
-
Shimotori, T. & Arnold, W. A.: Measurement and estimation of Henry’s law constants of chlorinated ethylenes in aqueous surfactant solutions, J. Chem. Eng. Data, 48, 253–261, doi:10.1021/JE025553Z (2003).
-
Staudinger, J. & Roberts, P. V.: A critical review of Henry’s law constants for environmental applications, Crit. Rev. Environ. Sci. Technol., 26, 205–297, doi:10.1080/10643389609388492 (1996).
-
Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
-
Tancrède, M. V. & Yanagisawa, Y.: An analytical method to determine Henry’s law constant for selected volatile organic compounds at concentrations and temperatures corresponding to tap water use, J. Air Waste Manage. Assoc., 40, 1658–1663, doi:10.1080/10473289.1990.10466813 (1990).
-
Vane, L. M. & Giroux, E. L.: Henry’s law constants and micellar partitioning of volatile organic compounds in surfactant solutions, J. Chem. Eng. Data, 45, 38–47, doi:10.1021/JE990195U (2000).
-
Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
-
Warneck, P.: A review of Henry’s law coefficients for chlorine-containing C1 and C2 hydrocarbons, Chemosphere, 69, 347–361, doi:10.1016/J.CHEMOSPHERE.2007.04.088 (2007).
-
Warner, H. P., Cohen, J. M., & Ireland, J. C.: Determination of Henry’s law constants of selected priority pollutants, Tech. rep., U.S. EPA, Municipal Environmental Research Laboratory, Wastewater Research Division, Cincinnati, Ohio, 45268, USA (1980).
-
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
-
Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
-
Yurteri, C., Ryan, D. F., Callow, J. J., & Gurol, M. D.: The effect of chemical composition of water on Henry’s law constant, J. Water Pollut. Control Fed., 59, 950–956 (1987).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
1) |
A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented. |
12) |
Value at T = 293 K. |
14) |
Value at T = 310 K. |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
33) |
Fitting the temperature dependence dlnH/d(1/T) produced a low correlation coefficient (r2 < 0.9). The data should be treated with caution. |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
71) |
Solubility in sea water. |
80) |
Value at T = 297 K. |
81) |
Value at T = 288 K. |
88) |
Value at T = 295 K. |
154) |
Value at T = 275 K. |
231) |
English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown. |
232) |
Value from the training dataset. |
238) |
Value given here as quoted by Gharagheizi et al. (2010). |
239) |
Calculated using linear free energy relationships (LFERs). |
240) |
Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC). |
241) |
Calculated using COSMOtherm. |
247) |
Calculated using a combination of a group contribution method and neural networks. |
249) |
Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here. |
250) |
Value from the training set. |
278) |
Extrapolated from data measured between 40 °C and 80 °C. |
279) |
Data are taken from the report by Howe et al. (1987). |
299) |
Value given here as quoted by Staudinger and Roberts (1996). |
651) |
The same data were also published in McConnell et al. (1975). |
653) |
Values at different temperatures are from different sources. Thus a temperature dependence was not calculated. |
701) |
The data from Schwardt et al. (2021) were fitted to the three-parameter equation: Hscp= exp( −330.94781 +18207.73829/T +46.05991 ln(T)) mol m−3 Pa−1, with T in K. |
702) |
The data from Knauss et al. (2000) were fitted to the three-parameter equation: Hscp= exp( −281.09217 +15955.08953/T +38.60107 ln(T)) mol m−3 Pa−1, with T in K. |
703) |
The data from Robbins et al. (1993) were fitted to the three-parameter equation: Hscp= exp( −1145.60543 +55089.35358/T +167.32916 ln(T)) mol m−3 Pa−1, with T in K. |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|