MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Esters (RCOOR) → ethyl hexanoate

FORMULA:C5H11COOC2H5
TRIVIAL NAME: ethyl caproate
CAS RN:123-66-0
STRUCTURE
(FROM NIST):
InChIKey:SHZIWNPUGXLXDT-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
1.9×10−2 7200 Plyasunov et al. (2004) L
1.4×10−2 Aprea et al. (2007) M
1.6×10−2 Landy et al. (1996) M
9.4×10−3 Landy et al. (1995) M
6.9×10−3 Philippe et al. (2003) V 14)
1.8×10−2 Abraham (1984) V
3.0 Abney (2021) Q 401)
1.4×10−2 Savary et al. (2014) Q
1.1×10−2 Hilal et al. (2008) Q
1.7×10−2 English and Carroll (2001) Q 231) 261)
1.7×10−2 Nirmalakhandan et al. (1997) Q
1.8×10−2 Abraham et al. (1990) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abney, C. A.: Predicting Henry’s Law constants of volatile organic compounds present in bourbon using molecular simulations, Master’s thesis, University of Louisville, Kentucky, USA, doi:10.18297/etd/3440 (2021).
  • Abraham, M. H.: Thermodynamics of solution of homologous series of solutes in water, J. Chem. Soc. Faraday Trans. 1, 80, 153–181, doi:10.1039/F19848000153 (1984).
  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Aprea, E., Biasioli, F., Märk, T. D., & Gasperi, F.: PTR-MS study of esters in water and water/ethanol solutions: Fragmentation patterns and partition coefficients, Int. J. Mass Spectrom., 262, 114–121, doi:10.1016/J.IJMS.2006.10.016 (2007).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Landy, P., Druaux, C., & A.Voilley: Retention of aroma compounds by proteins in aqueous solution, Food Chem., 54, 387–392, doi:10.1016/0308-8146(95)00069-U (1995).
  • Landy, P., Courthaudon, J.-L., Dubois, C., & Voilley, A.: Effect of interface in model food emulsions on the volatility of aroma compounds, J. Agric. Food Chem., 44, 526–530, doi:10.1021/JF950279G (1996).
  • Nirmalakhandan, N., Brennan, R. A., & Speece, R. E.: Predicting Henry’s law constant and the effect of temperature on Henry’s law constant, Wat. Res., 31, 1471–1481, doi:10.1016/S0043-1354(96)00395-8 (1997).
  • Philippe, E., Seuvre, A.-M., Colas, B., Langendorff, V., Schippa, C., & Voilley, A.: Behavior of flavor compounds in model food systems: a thermodynamic study, J. Agric. Food Chem., 51, 1393–1398, doi:10.1021/JF020862E (2003).
  • Plyasunov, A. V., Plyasunova, N. V., & Shock, E. L.: Group contribution values for the thermodynamic functions of hydration of aliphatic esters at 298.15 K, 0.1 MPa, J. Chem. Eng. Data, 49, 1152–1167, doi:10.1021/JE049850A (2004).
  • Savary, G., Hucher, N., Petibon, O., & Grisel, M.: Study of interactions between aroma compounds and acacia gum using headspace measurements, Food Hydrocolloids, 37, 1–6, doi:10.1016/J.FOODHYD.2013.10.026 (2014).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

14) Value at T = 310 K.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
261) Value from the validation dataset.
401) Calculated for an aqueous solution containing 60 % ethanol by volume as the solvent.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *