MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with chlorine (Cl)Chlorocarbons with nitrogen (C, H, O, N, Cl) → 2,6-dichlorobenzenenitrile

FORMULA:C6H3Cl2CN
TRIVIAL NAME: dichlobenil
CAS RN:1194-65-6
STRUCTURE
(FROM NIST):
InChIKey:YOYAIZYFCNQIRF-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
4.8×10−1 5400 Schoene and Steinhanses (1985) M
9.8×10−1 Duchowicz et al. (2020) V 187)
9.9×10−1 HSDB (2015) V
1.5 Mackay et al. (2006d) V
1.4 Schüürmann (2000) V
1.5 Suntio et al. (1988) V 12)
1.4 Burkhard and Guth (1981) V
1.5×10−2 Barcelo and Hennion (1997) X 569)
3.5×10−1 Duchowicz et al. (2020) Q
1.5×10−2 Goodarzi et al. (2010) Q 570) 571)
3.6×10−1 Modarresi et al. (2007) Q 68)
6000 Kühne et al. (2005) Q
5500 Kühne et al. (2005) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Barcelo, D. & Hennion, M. C.: Trace Determination of Pesticides and Their Degradation Products in Water, Elsevier Science, Amsterdam, ISBN 9780444818423 (1997).
  • Burkhard, N. & Guth, J. A.: Rate of volatilisation of pesticides from soil surfaces; comparison of calculated results with those determined in a laboratory model system, Pestic. Sci., 12, 37–44, doi:10.1002/PS.2780120106 (1981).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Goodarzi, M., Ortiz, E. V., Coelho, L. D. S., & Duchowicz, P. R.: Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticides, Atmos. Environ., 44, 3179–3186, doi:10.1016/J.ATMOSENV.2010.05.025 (2010).
  • HSDB: Hazardous Substances Data Bank, TOXicology data NETwork (TOXNET), National Library of Medicine (US), URL https://www.nlm.nih.gov/toxnet/Accessing_HSDB_Content_from_PubChem.html (2015).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Nitrogen and Sulfur Containing Compounds and Pesticides, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006d).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Schoene, K. & Steinhanses, J.: Determination of Henry’s law constant by automated head space-gas chromatography, Fresenius J. Anal. Chem., 321, 538–543, doi:10.1007/BF00464360 (1985).
  • Schüürmann, G.: Prediction of Henry’s law constant of benzene derivatives using quantum chemical continuum-solvation models, J. Comput. Chem., 21, 17–34, doi:10.1002/(SICI)1096-987X(20000115)21:1<17::AID-JCC3>3.0.CO;2-5 (2000).
  • Suntio, L. R., Shiu, W. Y., Mackay, D., Seiber, J. N., & Glotfelty, D.: Critical review of Henry’s law constants for pesticides, Rev. Environ. Contam. Toxicol., 103, 1–59, doi:10.1007/978-1-4612-3850-8_1 (1988).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

12) Value at T = 293 K.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
187) Estimation based on the quotient between vapor pressure and water solubility, extracted from HENRYWIN.
569) Value given here as quoted by Goodarzi et al. (2010).
570) Goodarzi et al. (2010) compared several QSPR methods and found that the Levenberg-Marquardt algorithm with Bayesian regularization produces the best results. Values obtained with other methods can be found in their supplement.
571) Value from the validation set.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *