MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsHydrocarbons (C, H)Aliphatic alkenes and cycloalkenes → 2-methylpropene

FORMULA:C4H8
TRIVIAL NAME: isobutene
CAS RN:115-11-7
STRUCTURE
(FROM NIST):
InChIKey:VQTUBCCKSQIDNK-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
5.7×10−5 3000 Plyasunov and Shock (2000) L
5.6×10−5 3000 Wilhelm et al. (1977) L
4.8×10−5 McAuliffe (1966) M
4.6×10−5 Mackay et al. (2006a) V
4.6×10−5 Mackay et al. (1993) V
4.6×10−5 Hine and Mookerjee (1975) V
4.8×10−5 Yaws (2003) X 238)
6.1×10−5 Hayer et al. (2022) Q 20)
3.6×10−5 Keshavarz et al. (2022) Q
5.1×10−4 Duchowicz et al. (2020) Q 300)
1.6×10−4 Wang et al. (2017) Q 81) 239)
3.9×10−5 Wang et al. (2017) Q 81) 240)
9.3×10−5 Wang et al. (2017) Q 81) 241)
2.0×10−5 Gharagheizi et al. (2012) Q
4.9×10−5 Raventos-Duran et al. (2010) Q 243) 244)
9.9×10−5 Raventos-Duran et al. (2010) Q 245)
3.9×10−5 Raventos-Duran et al. (2010) Q 246)
6.1×10−5 Gharagheizi et al. (2010) Q 247)
8.6×10−5 Hilal et al. (2008) Q
4.6×10−5 Modarresi et al. (2007) Q 68)
3400 Kühne et al. (2005) Q
8.2×10−6 Modarresi et al. (2005) Q 248)
4.7×10−5 Yaffe et al. (2003) Q 249) 250)
6.5×10−5 Yao et al. (2002) Q 230)
4.8×10−5 English and Carroll (2001) Q 231) 232)
5.3×10−5 Katritzky et al. (1998) Q
4.5×10−5 Suzuki et al. (1992) Q 233)
2.8×10−5 Nirmalakhandan and Speece (1988) Q
4.5×10−5 Duchowicz et al. (2020) ? 21) 186)
3000 Kühne et al. (2005) ?
4.8×10−5 Yaws (1999) ? 21)
5.6×10−5 3000 Yaws et al. (1999) ? 21)
4.8×10−5 Yaws and Yang (1992) ? 21)
Mackay and Shiu (1981) W 314)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
  • Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Mackay, D. & Shiu, W. Y.: A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, doi:10.1063/1.555654 (1981).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton, ISBN 0873719735 (1993).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. I of Introduction and Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006a).
  • McAuliffe, C.: Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin, and aromatic hydrocarbons, J. Phys. Chem., 70, 1267–1275, doi:10.1021/J100876A049 (1966).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: Henry’s law constant of hydrocarbons in air–water system: The cavity ovality effect on the non-electrostatic contribution term of solvation free energy, SAR QSAR Environ. Res., 16, 461–482, doi:10.1080/10659360500319869 (2005).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
  • Plyasunov, A. V. & Shock, E. L.: Thermodynamic functions of hydration of hydrocarbons at 298.15K and 0.1MPa, Geochim. Cosmochim. Acta, 64, 439–468, doi:10.1016/S0016-7037(99)00330-0 (2000).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Wilhelm, E., Battino, R., & Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, doi:10.1021/CR60306A003 (1977).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
  • Yaws, C. L., Hopper, J. R., Wang, X., Rathinsamy, A. K., & Pike, R. W.: Calculating solubility & Henry’s law constants for gases in water, Chem. Eng., pp. 102–105 (1999).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
81) Value at T = 288 K.
186) Experimental value, extracted from HENRYWIN.
230) Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
232) Value from the training dataset.
233) Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details.
238) Value given here as quoted by Gharagheizi et al. (2010).
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
243) Value from the training dataset.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
247) Calculated using a combination of a group contribution method and neural networks.
248) Modarresi et al. (2005) use different descriptors for the QSPR models. They conclude that their "COSA" method and the artificial neural network (ANN) are best. However, as COSA is not ideal for hydrocarbons with low solubility, only results obtained with ANN are shown here.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
300) Value from the test set for true external validation.
314) According to Donahue and Prinn (1993), the value is incorrect.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *