MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with chlorine (Cl)Chlorocarbons with nitrogen (C, H, O, N, Cl) → 2-chloropyridine

FORMULA:C5H4ClN
CAS RN:109-09-1
STRUCTURE
(FROM NIST):
InChIKey:OKDGRDCXVWSXDC-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
7.4×10−1 5900 Arnett and Chawla (1979) M 561)
6.1×10−1 Duchowicz et al. (2020) V 187)
1.9×10−1 Duchowicz et al. (2020) Q
5.8×10−1 Hilal et al. (2008) Q
1.1 Modarresi et al. (2007) Q 68)
6100 Kühne et al. (2005) Q
6.7×10−1 Yaffe et al. (2003) Q 249) 250)
2.9×10−1 English and Carroll (2001) Q 231) 275)
8.0×10−2 Katritzky et al. (1998) Q
1.5×101 Nirmalakhandan et al. (1997) Q
6600 Kühne et al. (2005) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Arnett, E. M. & Chawla, B.: Complete thermodynamic analysis of the hydration of thirteen pyridines and pyridinium ions. The special case of 2,6-di-tert-butylpyridine, J. Am. Chem. Soc., 101, 7141–7146, doi:10.1021/JA00518A001 (1979).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N., Brennan, R. A., & Speece, R. E.: Predicting Henry’s law constant and the effect of temperature on Henry’s law constant, Wat. Res., 31, 1471–1481, doi:10.1016/S0043-1354(96)00395-8 (1997).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
187) Estimation based on the quotient between vapor pressure and water solubility, extracted from HENRYWIN.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
275) Value from the test dataset.
561) Calculated using ∆Gsg→ H2O and ∆Hsg→ H2O from Table IV of Arnett and Chawla (1979). Since some of the values in this table are taken directly from Andon et al. (1954), it is assumed that the thermodynamic properties are defined in the same way. Since ∆Hsg→ H2O is defined relative to pyridine, a value of −11.93 kcal mol−1 from Arnett et al. (1977) was added.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *