Henry's Law Constants

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Henry's Law Constants





Contact, Imprint, Acknowledgements

When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.

Henry's Law ConstantsOrganic species with nitrogen (N)Heterocycles with oxygen and nitrogen (C, H, O, N) → 4-methyl-1-oxa-4-azacyclohexane

TRIVIAL NAME: N-methylmorpholine; 4-methylmorpholine
CAS RN:109-02-4

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
5.0 Du et al. (2017) M 480)
1.2×101 10000 Leng et al. (2015a) M
1.8×101 8300 Cabani et al. (1975a) T
9.6 Du et al. (2017) Q 551)
3.6 Du et al. (2017) Q
5.7 Hilal et al. (2008) Q
6.4 Modarresi et al. (2007) Q 68)
1.4×101 English and Carroll (2001) Q 231) 232)
1.7×101 Nirmalakhandan et al. (1997) Q


The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.


  • Cabani, S., Conti, G., Giannessi, D., & Lepori, L.: Thermodynamic study of aqueous dilute solutions of organic compounds. Part 3. – Morpholines and piperazines, J. Chem. Soc. Faraday Trans. 1, 71, 1154–1160, doi:10.1039/F19757101154 (1975a).
  • Du, Y., Yuan, Y., & Rochelle, G. T.: Volatility of amines for CO2 capture, Int. J. Greenhouse Gas Control, 58, 1–9, doi:10.1016/J.IJGGC.2017.01.001 (2017).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Leng, C., Kish, J. D., Roberts, J. E., Dwebi, I., Chon, N., & Liu, Y.: Temperature-dependent Henry’s law constants of atmospheric amines, J. Phys. Chem. A, 119, 8884–8891, doi:10.1021/ACS.JPCA.5B05174 (2015a).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
  • Nirmalakhandan, N., Brennan, R. A., & Speece, R. E.: Predicting Henry’s law constant and the effect of temperature on Henry’s law constant, Wat. Res., 31, 1471–1481, doi:10.1016/S0043-1354(96)00395-8 (1997).


Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.


68) Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
232) Value from the training dataset.
480) Value at T = 313 K.
551) Calculated using the method from Nguyen (2013).

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants


* * *