When referring to the compilation of Henry's Law Constants, please cite
this publication:
R. Sander: Compilation of Henry's law constants (version 5.0.0) for
water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023),
doi:10.5194/acp-23-10901-2023
The publication from 2023 replaces that from 2015,
which is now obsolete. Please do not cite the old paper anymore.
|
FORMULA: | C6H5CH3 |
TRIVIAL NAME:
|
toluene
|
CAS RN: | 108-88-3 |
STRUCTURE
(FROM
NIST):
|
|
InChIKey: | YXFVVABEGXRONW-UHFFFAOYSA-N |
|
|
References |
Type |
Notes |
[mol/(m3Pa)] |
[K] |
|
|
|
1.6×10−3 |
4100 |
Schwardt et al. (2021) |
L |
1)
|
1.9×10−3 |
4000 |
Brockbank (2013) |
L |
1)
339)
|
1.5×10−3 |
4300 |
Staudinger and Roberts (2001) |
L |
|
1.6×10−3 |
4400 |
Plyasunov and Shock (2000) |
L |
|
1.5×10−3 |
4000 |
Staudinger and Roberts (1996) |
L |
|
1.5×10−3 |
|
Mackay and Shiu (1981) |
L |
|
1.5×10−3 |
4600 |
Kutsuna and Kaneyasu (2021) |
M |
|
1.5×10−3 |
|
Kim and Kim (2014) |
M |
|
2.1×10−3 |
4400 |
Hiatt (2013) |
M |
|
2.8×10−3 |
|
Zhang et al. (2013) |
M |
327)
|
1.7×10−3 |
4200 |
Lee et al. (2013) |
M |
|
1.5×10−3 |
|
Kish et al. (2013) |
M |
|
1.3×10−3 |
2700 |
Lau et al. (2010) |
M |
11)
|
1.5×10−3 |
4300 |
Sieg et al. (2009) |
M |
328)
|
1.4×10−3 |
|
Helburn et al. (2008) |
M |
|
1.5×10−3 |
|
Li et al. (2008) |
M |
|
1.3×10−3 |
2100 |
Falabella and Teja (2008) |
M |
11)
340)
|
1.4×10−3 |
|
Lodge and Danso (2007) |
M |
|
1.5×10−3 |
3900 |
Lin and Chou (2006) |
M |
|
|
|
Cheng et al. (2004) |
M |
330)
|
1.4×10−3 |
2200 |
Lei et al. (2004) |
M |
329)
|
|
|
Cheng et al. (2003) |
M |
330)
|
1.4×10−3 |
|
Karl et al. (2003) |
M |
88)
|
2.1×10−3 |
|
Bobadilla et al. (2003) |
M |
|
1.7×10−3 |
4300 |
Bakierowska and Trzeszczyński (2003) |
M |
|
2.0×10−3 |
|
Destaillats and Charles (2002) |
M |
|
1.5×10−3 |
4200 |
Görgényi et al. (2002) |
M |
341)
|
1.7×10−3 |
3600 |
Bierwagen and Keller (2001) |
M |
|
1.0×10−3 |
|
Ayuttaya et al. (2001) |
M |
342)
|
1.7×10−4 |
|
Ayuttaya et al. (2001) |
M |
343)
|
7.8×10−4 |
|
Ayuttaya et al. (2001) |
M |
344)
|
2.3×10−3 |
|
Ayuttaya et al. (2001) |
M |
345)
|
1.5×10−3 |
|
David et al. (2000) |
M |
73)
|
1.6×10−3 |
|
Miller and Stuart (2000) |
M |
73)
|
1.9×10−3 |
4000 |
Vane and Giroux (2000) |
M |
|
8.5×10−4 |
|
McIntosh and Heffron (2000) |
M |
14)
|
1.5×10−3 |
4700 |
Dewulf et al. (1999) |
M |
|
1.7×10−3 |
|
Altschuh et al. (1999) |
M |
|
1.5×10−3 |
|
Ryu and Park (1999) |
M |
|
1.6×10−3 |
|
Dohnal and Hovorka (1999) |
M |
|
1.5×10−3 |
|
Allen et al. (1998) |
M |
|
2.1×10−3 |
|
Peng and Wan (1998) |
M |
|
1.2×10−3 |
3600 |
Peng and Wan (1998) |
M |
71)
|
2.0×10−3 |
|
de Wolf and Lieder (1998) |
M |
88)
|
1.4×10−3 |
|
Welke et al. (1998) |
M |
|
1.7×10−3 |
3700 |
Peng and Wan (1997) |
M |
|
1.7×10−3 |
2800 |
Kondoh and Nakajima (1997) |
M |
|
1.3×10−3 |
3900 |
Park et al. (1997) |
M |
|
1.4×10−3 |
4100 |
Turner et al. (1996) |
M |
|
1.5×10−3 |
|
Ramachandran et al. (1996) |
M |
|
1.8×10−3 |
4400 |
Dewulf et al. (1995) |
M |
|
1.6×10−3 |
|
Nielsen et al. (1994) |
M |
|
1.5×10−3 |
4400 |
Robbins et al. (1993) |
M |
346)
|
1.3×10−3 |
|
Hoff et al. (1993) |
M |
|
1.5×10−3 |
2500 |
Ettre et al. (1993) |
M |
11)
|
1.4×10−3 |
|
Hansen et al. (1993) |
M |
336)
|
1.5×10−3 |
4500 |
Perlinger et al. (1993) |
M |
|
1.6×10−3 |
|
Li and Carr (1993) |
M |
|
1.6×10−3 |
|
Li et al. (1993) |
M |
|
1.5×10−3 |
|
Zhang and Pawliszyn (1993) |
M |
|
1.6×10−3 |
2500 |
Kolb et al. (1992) |
M |
278)
|
1.5×10−3 |
|
Anderson (1992) |
M |
73)
|
3.7×10−3 |
|
Yu (1992) |
M |
12)
|
1.4×10−3 |
5000 |
Bissonette et al. (1990) |
M |
|
1.5×10−3 |
6500 |
Lamarche and Droste (1989) |
M |
347)
|
1.5×10−3 |
3000 |
Ashworth et al. (1988) |
M |
279)
|
1.6×10−3 |
|
Keeley et al. (1988) |
M |
|
1.7×10−3 |
|
Yurteri et al. (1987) |
M |
12)
|
1.2×10−3 |
5400 |
Schoene and Steinhanses (1985) |
M |
|
1.5×10−3 |
|
Garbarini and Lion (1985) |
M |
|
1.5×10−3 |
4200 |
Sanemasa et al. (1982) |
M |
|
1.5×10−3 |
3800 |
Leighton and Calo (1981) |
M |
|
1.6×10−3 |
4100 |
Sanemasa et al. (1981) |
M |
|
1.5×10−3 |
4900 |
Ervin et al. (1980) |
M |
|
1.7×10−3 |
|
Warner et al. (1980) |
M |
|
1.5×10−3 |
|
Mackay et al. (1979) |
M |
|
8.6×10−4 |
|
Sato and Nakajima (1979a) |
M |
14)
|
1.5×10−3 |
4700 |
Tsibul’skii et al. (1979) |
M |
|
1.9×10−3 |
|
Vitenberg et al. (1975) |
M |
|
1.6×10−3 |
5000 |
Brown and Wasik (1974) |
M |
|
2.0×10−3 |
4900 |
Hartkopf and Karger (1973) |
M |
|
1.7×10−3 |
5900 |
Wasik and Tsang (1970) |
M |
|
1.6×10−3 |
|
Martins et al. (2017) |
V |
316)
|
1.5×10−3 |
|
Mackay et al. (2006a) |
V |
|
1.9×10−3 |
4300 |
Fogg and Sangster (2003) |
V |
348)
|
1.5×10−3 |
|
Shiu and Ma (2000) |
V |
|
1.5×10−3 |
|
Park et al. (1997) |
V |
|
1.5×10−3 |
|
Mackay et al. (1992a) |
V |
|
1.3×10−3 |
|
Hwang et al. (1992) |
V |
|
1.7×10−3 |
|
Eastcott et al. (1988) |
V |
|
1.5×10−3 |
4400 |
Abraham (1984) |
V |
|
1.9×10−3 |
4200 |
Ben-Naim and Wilf (1980) |
V |
1)
|
1.5×10−3 |
|
Warner et al. (1980) |
V |
|
1.5×10−3 |
|
Hine and Mookerjee (1975) |
V |
|
1.5×10−3 |
|
Mackay and Leinonen (1975) |
V |
|
1.8×10−3 |
4400 |
Wauchope and Haque (1972) |
V |
|
1.7×10−3 |
|
McAuliffe (1966) |
V |
24)
|
1.8×10−3 |
4300 |
Andon et al. (1954) |
V |
338)
|
1.8×10−3 |
|
Bohon and Claussen (1951) |
V |
|
1.6×10−3 |
4400 |
Plyasunov et al. (2001) |
T |
|
1.5×10−3 |
|
Mackay et al. (1979) |
T |
|
|
4400 |
Gill et al. (1976) |
T |
|
1.6×10−3 |
|
Yaws (2003) |
X |
259)
|
1.5×10−3 |
|
Yaws (2003) |
X |
238)
|
1.5×10−3 |
1900 |
Goldstein (1982) |
X |
299)
|
1.5×10−3 |
|
McAuliffe (1971) |
X |
349)
|
1.5×10−3 |
|
Sieg et al. (2008) |
C |
|
1.5×10−3 |
|
Schüürmann (2000) |
C |
21)
|
1.7×10−3 |
|
Smith et al. (1993) |
C |
12)
|
1.4×10−3 |
|
Ryan et al. (1988) |
C |
|
1.7×10−3 |
|
Shen (1982) |
C |
|
1.5×10−3 |
|
Dupeux et al. (2022) |
Q |
260)
|
1.2×10−3 |
|
Hayer et al. (2022) |
Q |
20)
|
9.7×10−4 |
|
Keshavarz et al. (2022) |
Q |
|
3.1×10−3 |
|
Duchowicz et al. (2020) |
Q |
300)
|
3.8×10−3 |
|
Wang et al. (2017) |
Q |
81)
239)
|
1.1×10−3 |
|
Wang et al. (2017) |
Q |
81)
240)
|
3.0×10−3 |
|
Wang et al. (2017) |
Q |
81)
241)
|
1.5×10−3 |
|
Li et al. (2014) |
Q |
242)
|
2.0×10−3 |
|
Gharagheizi et al. (2012) |
Q |
|
1.6×10−3 |
|
Raventos-Duran et al. (2010) |
Q |
243)
244)
|
1.2×10−3 |
|
Raventos-Duran et al. (2010) |
Q |
245)
|
1.6×10−3 |
|
Raventos-Duran et al. (2010) |
Q |
246)
|
1.3×10−3 |
|
Gharagheizi et al. (2010) |
Q |
247)
|
1.5×10−3 |
|
Hilal et al. (2008) |
Q |
|
1.2×10−3 |
|
Modarresi et al. (2007) |
Q |
68)
|
|
4300 |
Kühne et al. (2005) |
Q |
|
1.6×10−3 |
|
Yaffe et al. (2003) |
Q |
249)
250)
|
7.2×10−4 |
|
Yao et al. (2002) |
Q |
230)
|
1.6×10−3 |
|
English and Carroll (2001) |
Q |
231)
232)
|
2.7×10−4 |
|
Katritzky et al. (1998) |
Q |
|
1.5×10−3 |
|
Suzuki et al. (1992) |
Q |
233)
|
1.6×10−3 |
|
Nirmalakhandan and Speece (1988) |
Q |
|
1.2×10−3 |
|
Arbuckle (1983) |
Q |
|
1.5×10−3 |
|
Duchowicz et al. (2020) |
? |
21)
186)
|
|
4200 |
Kühne et al. (2005) |
? |
|
1.6×10−3 |
|
Yaws (1999) |
? |
21)
|
9.0×10−4 |
|
Abraham and Weathersby (1994) |
? |
21)
|
1.5×10−3 |
|
Yaws and Yang (1992) |
? |
21)
|
1.5×10−3 |
|
Abraham et al. (1990) |
? |
|
1.9×10−3 |
|
Mackay and Yeun (1983) |
? |
|
Data
The first column contains Henry's law solubility constant
at the reference temperature of 298.15 K.
The second column contains the temperature dependence
, also at the
reference temperature.
References
-
Abraham, M. H.: Thermodynamics of solution of homologous series of solutes in water, J. Chem. Soc. Faraday Trans. 1, 80, 153–181, doi:10.1039/F19848000153 (1984).
-
Abraham, M. H. & Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456, doi:10.1002/JPS.2600831017 (1994).
-
Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
-
Allen, J. M., Balcavage, W. X., Ramachandran, B. R., & Shrout, A. L.: Determination of Henry’s Law constants by equilibrium partitioning in a closed system using a new in situ optical absorbance method, Environ. Toxicol. Chem., 17, 1216–1221, doi:10.1002/ETC.5620170704 (1998).
-
Altschuh, J., Brüggemann, R., Santl, H., Eichinger, G., & Piringer, O. G.: Henry’s law constants for a diverse set of organic chemicals: Experimental determination and comparison of estimation methods, Chemosphere, 39, 1871–1887, doi:10.1016/S0045-6535(99)00082-X (1999).
-
Anderson, M. A.: Influence of surfactants on vapor-liquid partitioning, Environ. Sci. Technol., 26, 2186–2191, doi:10.1021/ES00035A017 (1992).
-
Andon, R. J. L., Cox, J. D., & Herington, E. F. G.: Phase relationships in the pyridine series. Part V. The thermodynamic properties of dilute solutions of pyridine bases in water at 25∘ and 40∘, J. Chem. Soc., pp. 3188–3196, doi:10.1039/JR9540003188 (1954).
-
Arbuckle, W. B.: Estimating activity coefficients for use in calculating environmental parameters, Environ. Sci. Technol., 17, 537–542, doi:10.1021/ES00115A008 (1983).
-
Ashworth, R. A., Howe, G. B., Mullins, M. E., & Rogers, T. N.: Air–water partitioning coefficients of organics in dilute aqueous solutions, J. Hazard. Mater., 18, 25–36, doi:10.1016/0304-3894(88)85057-X (1988).
-
Ayuttaya, P. C. N., Rogers, T. N., Mullins, M. E., & Kline, A. A.: Henry’s law constants derived from equilibrium static cell measurements for dilute organic-water mixtures, Fluid Phase Equilib., 185, 359–377, doi:10.1016/S0378-3812(01)00484-8 (2001).
-
Bakierowska, A.-M. & Trzeszczyński, J.: Graphical method for the determination of water/gas partition coefficients of volatile organic compounds by a headspace gas chromatography technique, Fluid Phase Equilib., 213, 139–146, doi:10.1016/S0378-3812(03)00286-3 (2003).
-
Ben-Naim, A. & Wilf, J.: Solubilities and hydrophobic interactions in aqueous solutions of monoalkylbenzene molecules, J. Phys. Chem., 84, 583–586, doi:10.1021/J100443A004 (1980).
-
Bierwagen, B. G. & Keller, A. A.: Measurement of Henry’s law constant for methyl tert-butyl ether using solid-phase microextraction, Environ. Toxicol. Chem., 20, 1625–1629, doi:10.1002/ETC.5620200802 (2001).
-
Bissonette, E. M., Westrick, J. J., & Morand, J. M.: Determination of Henry’s coefficient for volatile organic compounds in dilute aqueous systems, in: Proceedings of the Annual Conference of the American Water Works Association, Cincinnati, OH, June 17–21, pp. 1913–1922 (1990).
-
Bobadilla, R., Huybrechts, T., Dewulf, J., & van Langenhove, H.: Determination of the Henry’s constant of volatile and semi-volatile organic componuds of environmental concern by the bas (batch air stripping) technique: a new mathematical approach, J. Chilean Chem. Soc., 48, doi:10.4067/S0717-97072003000300001 (2003).
-
Bohon, R. J. & Claussen, W. F.: The solubility of aromatic hydrocarbons in water, J. Am. Chem. Soc., 73, 1571–1578, doi:10.1021/JA01148A047 (1951).
-
Brockbank, S. A.: Aqueous Henry’s law constants, infinite dilution activity coefficients, and water solubility: critically evaluated database, experimental analysis, and prediction methods, Ph.D. thesis, Brigham Young University, USA, URL https://scholarsarchive.byu.edu/etd/3691/ (2013).
-
Brown, R. L. & Wasik, S. P.: A method of measuring the solubilities of hydrocarbons in aqueous solutions, J. Res. Natl. Bureau Standards A: Phys. Chem., 78A, 453–460, doi:10.6028/JRES.078A.028 (1974).
-
Cheng, W.-H., Chu, F.-S., & Liou, J.-J.: Air–water interface equilibrium partitioning coefficients of aromatic hydrocarbons, Atmos. Environ., 37, 4807–4815, doi:10.1016/J.ATMOSENV.2003.08.012 (2003).
-
Cheng, W.-H., Chou, M.-S., Perng, C.-H., & Chu, F.-S.: Determining the equilibrium partitioning coefficients of volatile organic compounds at an air–water interface, Chemosphere, 54, 935–942, doi:10.1016/J.CHEMOSPHERE.2003.08.038 (2004).
-
David, M. D., Fendinger, N. J., & Hand, V. C.: Determination of Henry’s law constants for organosilicones in actual and simulated wastewater, Environ. Sci. Technol., 34, 4554–4559, doi:10.1021/ES991204M (2000).
-
Destaillats, H. & Charles, M. J.: Henry’s law constants of carbonyl-pentafluorobenzyl hydroxylamine (PFBHA) derivatives in aqueous solution, J. Chem. Eng. Data, 47, 1481–1487, doi:10.1021/JE025545I (2002).
-
de Wolf, W. & Lieder, P. H.: A novel method to determine uptake and elimination kinetics of volatile chemicals in fish, Chemosphere, 36, 1713–1724, doi:10.1016/S0045-6535(97)10062-5 (1998).
-
Dewulf, J., Drijvers, D., & van Langenhove, H.: Measurement of Henry’s law constant as function of temperature and salinity for the low temperature range, Atmos. Environ., 29, 323–331, doi:10.1016/1352-2310(94)00256-K (1995).
-
Dewulf, J., van Langenhove, H., & Everaert, P.: Determination of Henry’s law coefficients by combination of the equilibrium partitioning in closed systems and solid-phase microextraction techniques, J. Chromatogr. A, 830, 353–363, doi:10.1016/S0021-9673(98)00877-2 (1999).
-
Dohnal, V. & Hovorka, Š.: Exponential saturator: a novel gas-liquid partitioning technique for measurement of large limiting activity coefficients, Ind. Eng. Chem. Res., 38, 2036–2043, doi:10.1021/IE980743H (1999).
-
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
-
Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
-
Eastcott, L., Shiu, W. Y., & Mackay, D.: Environmentally relevant physical-chemical properties of hydrocarbons: A review of data and development of simple correlations, Oil Chem. Pollut., 4, 191–216, doi:10.1016/S0269-8579(88)80020-0 (1988).
-
English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
-
Ervin, A. L., Mangone, M. A., & Singley, J. E.: Trace organics removal by air stripping, in: Proceedings of the Annual Conference of the American Water Works Association, pp. 507–530 (1980).
-
Ettre, L. S., Welter, C., & Kolb, B.: Determination of gas-liquid partition coefficients by automatic equilibrium headspace – gas chromatography utilizing the phase ratio variation method, Chromatographia, 35, 73–84, doi:10.1007/BF02278560 (1993).
-
Falabella, J. B. & Teja, A. S.: Air–water partitioning of gasoline components in the presence of sodium chloride, Energy Fuels, 22, 398–401, doi:10.1021/EF700513K (2008).
-
Fogg, P. & Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5 (2003).
-
Garbarini, D. R. & Lion, L. W.: Evaluation of sorptive partitioning of nonionic pollutants in closed systems by headspace analysis, Environ. Sci. Technol., 19, 1122–1128, doi:10.1021/ES00141A018 (1985).
-
Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
-
Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
-
Gill, S. J., Nichols, N. F., & Wadsö, I.: Calorimetric determination of enthalpies of solution of slightly soluble liquids II. Enthalpy of solution of some hydrocarbons in water and their use in establishing the temperature dependence of their solubilities, J. Chem. Thermodyn., 8, 445–452, doi:10.1016/0021-9614(76)90065-3 (1976).
-
Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry’s law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA (1982).
-
Görgényi, M., Dewulf, J., & Van Langenhove, H.: Temperature dependence of Henry’s law constant in an extended temperature range, Chemosphere, 48, 757–762, doi:10.1016/S0045-6535(02)00131-5 (2002).
-
Hansen, K. C., Zhou, Z., Yaws, C. L., & Aminabhavi, T. M.: Determination of Henry’s law constants of organics in dilute aqueous solutions, J. Chem. Eng. Data, 38, 546–550, doi:10.1021/JE00012A017 (1993).
-
Hartkopf, A. & Karger, B. L.: Study of the interfacial properties of water by gas chromatography, Acc. Chem. Res., 6, 209–216, doi:10.1021/AR50066A006 (1973).
-
Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
-
Helburn, R., Albritton, J., Howe, G., Michael, L., & Franke, D.: Henry’s law constants for fragrance and organic solvent compounds in aqueous industrial surfactants, J. Chem. Eng. Data, 53, 1071–1079, doi:10.1021/JE700418A (2008).
-
Hiatt, M. H.: Determination of Henry’s law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, doi:10.1021/JE3010535 (2013).
-
Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
-
Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
-
Hoff, J. T., Mackay, D., Gillham, R., & Shiu, W. Y.: Partitioning of organic chemicals at the air–water interface in environmental systems, Environ. Sci. Technol., 27, 2174–2180, doi:10.1021/ES00047A026 (1993).
-
Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
-
Karl, T., Yeretzian, C., Jordan, A., & Lindinger, W.: Dynamic measurements of partition coefficients using proton-transfer-reaction mass spectrometry (PTR-MS), Int. J. Mass Spectrom., 223-224, 383–395, doi:10.1016/S1387-3806(02)00927-2 (2003).
-
Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
-
Keeley, D. F., Hoffpauir, M. A., & Meriwether, J. R.: Solubility of aromatic hydrocarbons in water and sodium chloride solutions of different ionic strengths: benzene and toluene, Environ. Sci. Technol., 33, 87–89, doi:10.1021/JE00052A006 (1988).
-
Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
-
Kim, Y.-H. & Kim, K.-H.: Recent advances in thermal desorption-gas chromatography-mass spectrometery method to eliminate the matrix effect between air and water samples: Application to the accurate determination of Henry’s law constant, J. Chromatogr. A, 1342, 78–85, doi:10.1016/J.CHROMA.2014.03.040 (2014).
-
Kish, J. D., Leng, C. B., Kelley, J., Hiltner, J., Zhang, Y. H., & Liu, Y.: An improved approach for measuring Henry’s law coefficients of atmospheric organics, Atmos. Environ., 79, 561–565, doi:10.1016/J.ATMOSENV.2013.07.023 (2013).
-
Kolb, B., Welter, C., & Bichler, C.: Determination of partition coefficients by automatic equilibrium headspace gas chromatography by vapor phase calibration, Chromatographia, 34, 235–240, doi:10.1007/BF02268351 (1992).
-
Kondoh, H. & Nakajima, T.: Optimization of headspace cryofocus gas chromatography/mass spectrometry for the analysis of 54 volatile organic compounds, and the measurement of their Henry’s constants, J. Environ. Chem., 7, 81–89, doi:10.5985/JEC.7.81 (1997).
-
Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
-
Kutsuna, S. & Kaneyasu, N.: Henry’s law constants and hydration equilibrium constants of n-hexanal and their temperature dependence as determined by the rectangular pulse method, Chem. Eng. Sci., 239, 116 639, doi:10.1016/J.CES.2021.116639 (2021).
-
Lamarche, P. & Droste, R. L.: Air stripping mass transfer correlations for volatile organics, J. Am. Water Works Assoc., 81, 78–89, doi:10.1002/J.1551-8833.1989.TB03326.X (1989).
-
Lau, K., Rogers, T. N., & Chesney, D. J.: Measuring the aqueous Henry’s law constant at elevated temperatures using an extended EPICS technique, J. Chem. Eng. Data, 55, 5144–5148, doi:10.1021/JE100701W (2010).
-
Lee, S.-H., Mukherjee, S., Brewer, B., Ryan, R., Yu, H., & Gangoda, M.: A laboratory experiment to measure Henry’s law constants of volatile organic compounds with a bubble column and a gas chromatography flame ionization detector (GC-FID), J. Chem. Educ., 90, 495–499, doi:10.1021/ED200303X (2013).
-
Lei, Y. D., Wania, F., Mathers, D., & Mabury, S. A.: Determination of vapor pressures, octanol-air, and water-air partition coefficients for polyfluorinated sulfonamide, sulfonamidoethanols, and telomer alcohols, J. Chem. Eng. Data, 49, 1013–1022, doi:10.1021/JE049949H (2004).
-
Leighton, D. T. & Calo, J. M.: Distribution coefficients of chlorinated hydrocarbons in dilute air–water systems for groundwater contamination applications, J. Chem. Eng. Data, 26, 382–385, doi:10.1021/JE00026A010 (1981).
-
Li, J. & Carr, P. W.: Measurement of water-hexadecane partition coefficients by headspace gas chromatography and calculation of limiting activity coefficients in water, Anal. Chem., 65, 1443–1450, doi:10.1021/AC00058A023 (1993).
-
Li, J., Dallas, A. J., Eikens, D. I., Carr, P. W., Bergmann, D. L., Hait, M. J., & Eckert, C. A.: Measurement of large infinite dilution activity coefficients of nonelectrolytes in water by inert gas stripping and gas chromatography, Anal. Chem., 65, 3212–3218, doi:10.1021/AC00070A008 (1993).
-
Li, J.-Q., Shen, C.-Y., Xu, G.-H., Wang, H.-M., Jiang, H.-H., Han, H.-Y., Chu, Y.-N., & Zheng, P.-C.: Dynamic measurements of Henry’s law constant of aromatic compounds using proton transfer reaction mass spectrometry, Acta Phys. Chim. Sin., 24, 705–708 (2008).
-
Li, H., Wang, X., Yi, T., Xu, Z., & Liu, X.: Prediction of Henry’s law constants for organic compounds using multilayer feedforward neural networks based on linear salvation energy relationship, J. Chem. Pharm. Res., 6, 1557–1564 (2014).
-
Lin, J.-H. & Chou, M.-S.: Temperature effects on Henry’s law constants for four VOCs in air-activated sludge systems, Atmos. Environ., 40, 2469–2477, doi:10.1016/J.ATMOSENV.2005.12.037 (2006).
-
Lodge, K. B. & Danso, D.: The measurement of fugacity and the Henry’s law constant for volatile organic compounds containing chromophores, Fluid Phase Equilib., 253, 74–79, doi:10.1016/J.FLUID.2007.01.010 (2007).
-
Mackay, D. & Leinonen, P. J.: Rate of evaporation of low-solubility contaminants from water bodies to atmosphere, Environ. Sci. Technol., 9, 1178–1180, doi:10.1021/ES60111A012 (1975).
-
Mackay, D. & Shiu, W. Y.: A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, doi:10.1063/1.555654 (1981).
-
Mackay, D. & Yeun, A. T. K.: Mass transfer coefficient correlations for volatilization of organic solutes from water, Environ. Sci. Technol., 17, 211–217, doi:10.1021/ES00110A006 (1983).
-
Mackay, D., Shiu, W. Y., & Sutherland, R. P.: Determination of air–water Henry’s law constants for hydrophobic pollutants, Environ. Sci. Technol., 13, 333–337, doi:10.1021/ES60151A012 (1979).
-
Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. I of Monoaromatic Hydrocarbons, Chlorobenzenes, and PCBs, Lewis Publishers, Boca Raton, ISBN 0873715136 (1992a).
-
Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. I of Introduction and Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006a).
-
Martins, M. A. R., Silva, L. P., Ferreira, O., Schröder, B., Coutinho, J. A. P., & Pinho, S. P.: Terpenes solubility in water and their environmental distribution, J. Mol. Liq., 241, 996–1002, doi:10.1016/J.MOLLIQ.2017.06.099 (2017).
-
McAuliffe, C.: Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin, and aromatic hydrocarbons, J. Phys. Chem., 70, 1267–1275, doi:10.1021/J100876A049 (1966).
-
McAuliffe, C.: Gas chromatographic determination of solutes by multiple phase equilibrium, Chem. Technol., 1, 46–51 (1971).
-
McIntosh, J. M. & Heffron, J. J. A.: Modelling alterations in the partition coefficient in in vitro biological systems using headspace gas chromatography, J. Chromatogr. B, 738, 207–216, doi:10.1016/S0378-4347(99)00506-X (2000).
-
Miller, M. E. & Stuart, J. D.: Measurement of aqueous Henry’s law constants for oxygenates and aromatics found in gasolines by the static headspace method, Anal. Chem., 72, 622–625, doi:10.1021/AC990757C (2000).
-
Modarresi, H., Modarress, H., & Dearden, J. C.: QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, doi:10.1016/J.CHEMOSPHERE.2006.09.049 (2007).
-
Nielsen, F., Olsen, E., & Fredenslund, A.: Henry’s law constants and infinite dilution activity coefficients for volatile organic compounds in water by a validated batch air stripping method, Environ. Sci. Technol., 28, 2133–2138, doi:10.1021/ES00061A022 (1994).
-
Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
-
Park, S.-J., Han, S.-D., & Ryu, S.-A.: Measurement of air/water partition coefficient (Henry’s law constant) by using EPICS method and their relationship with vapor pressure and water solubility, J. Korean Inst. Chem. Eng., 35, 915–920 (1997).
-
Peng, J. & Wan, A.: Measurement of Henry’s constants of high-volatility organic compounds using a headspace autosampler, Environ. Sci. Technol., 31, 2998–3003, doi:10.1021/ES970240N (1997).
-
Peng, J. & Wan, A.: Effect of ionic strength on Henry’s constants of volatile organic compounds, Chemosphere, 36, 2731–2740, doi:10.1016/S0045-6535(97)10232-6 (1998).
-
Perlinger, J. A., Eisenreich, S. J., & Capel, P. D.: Application of headspace analysis to the study of sorption of hydrophobic organic chemicals to α−Al2O3, Environ. Sci. Technol., 27, 928–937, doi:10.1021/ES00042A016 (1993).
-
Plyasunov, A. V. & Shock, E. L.: Thermodynamic functions of hydration of hydrocarbons at 298.15K and 0.1MPa, Geochim. Cosmochim. Acta, 64, 439–468, doi:10.1016/S0016-7037(99)00330-0 (2000).
-
Plyasunov, A. V., O’Connell, J. P., Wood, R. H., & Shock, E. L.: Semiempirical equation of state for the infinite dilution thermodynamic functions of hydration of nonelectrolytes over wide ranges of temperature and pressure, Fluid Phase Equilib., 183–184, 133–142, doi:10.1016/S0378-3812(01)00427-7 (2001).
-
Ramachandran, B. R., Allen, J. M., & Halpern, A. M.: Air–water partitioning of environmentally important organic compounds, J. Chem. Educ., 73, 1058–1061, doi:10.1021/ED073P1058 (1996).
-
Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
-
Robbins, G. A., Wang, S., & Stuart, J. D.: Using the headspace method to determine Henry’s law constants, Anal. Chem., 65, 3113–3118, doi:10.1021/AC00069A026 (1993).
-
Ryan, J. A., Bell, R. M., Davidson, J. M., & O’Connor, G. A.: Plant uptake of non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323, doi:10.1016/0045-6535(88)90142-7 (1988).
-
Ryu, S.-A. & Park, S.-J.: A rapid determination method of the air/water partition coefficient and its application, Fluid Phase Equilib., 161, 295–304, doi:10.1016/S0378-3812(99)00193-4 (1999).
-
Sanemasa, I., Akari, M., Deguchi, T., & Nagai, H.: Solubilities of benzene and the alkylbenzenes in water – method for obtaining aqueous solutions saturated with vapours in equilibrium with organic liquids, Chem. Lett., 10, 225–228, doi:10.1246/CL.1981.225 (1981).
-
Sanemasa, I., Araki, M., Deguchi, T., & Nagai, H.: Solubility measurements of benzene and the alkylbenzenes in water by making use of solute vapor, Bull. Chem. Soc. Jpn., 55, 1054–1062, doi:10.1246/BCSJ.55.1054 (1982).
-
Sato, A. & Nakajima, T.: Partition coefficients of some aromatic hydrocarbons and ketones in water, blood and oil, Br. J. Ind. Med., 36, 231–234, doi:10.1136/OEM.36.3.231 (1979a).
-
Schoene, K. & Steinhanses, J.: Determination of Henry’s law constant by automated head space-gas chromatography, Fresenius J. Anal. Chem., 321, 538–543, doi:10.1007/BF00464360 (1985).
-
Schüürmann, G.: Prediction of Henry’s law constant of benzene derivatives using quantum chemical continuum-solvation models, J. Comput. Chem., 21, 17–34, doi:10.1002/(SICI)1096-987X(20000115)21:1<17::AID-JCC3>3.0.CO;2-5 (2000).
-
Schwardt, A., Dahmke, A., & Köber, R.: Henry’s law constants of volatile organic compounds between 0 and 95∘C – Data compilation and complementation in context of urban temperature increases of the subsurface, Chemosphere, 272, 129 858, doi:10.1016/J.CHEMOSPHERE.2021.129858 (2021).
-
Shen, T. T.: Estimation of organic compound emissions from waste lagoons, J. Air Pollut. Control Assoc., 32, 79–82, doi:10.1080/00022470.1982.10465374 (1982).
-
Shiu, W. Y. & Ma, K.-C.: Temperature dependence of physical-chemical properties of selected chemicals of environmental interest. I. mononuclear and polynuclear aromatic hydrocarbons, J. Phys. Chem. Ref. Data, 29, 41–130, doi:10.1063/1.556055 (2000).
-
Sieg, K., Fries, E., & Püttmann, W.: Analysis of benzene, toluene, ethylbenzene, xylenes and n-aldehydes in melted snow water via solid-phase dynamic extraction combined with gas chromatography/mass spectrometry, J. Chromatogr. A, 1178, 178–186, doi:10.1016/J.CHROMA.2007.11.025 (2008).
-
Sieg, K., Starokozheva, E., Schmidt, M. U., & Püttmann, W.: Inverse temperature dependence of Henry’s law coefficients for volatile organic compounds in supercooled water, Chemosphere, 77, 8–14, doi:10.1016/J.CHEMOSPHERE.2009.06.028 (2009).
-
Smith, J. R., Neuhauser, E. F., Middleton, A. C., Cunningham, J. J., Weightman, R. L., & Linz, D. G.: Treatment of organically contaminated groundwaters in municipal activated sludge systems, Water Environ. Res., 65, 804–818, doi:10.2175/WER.65.7.2 (1993).
-
Staudinger, J. & Roberts, P. V.: A critical review of Henry’s law constants for environmental applications, Crit. Rev. Environ. Sci. Technol., 26, 205–297, doi:10.1080/10643389609388492 (1996).
-
Staudinger, J. & Roberts, P. V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, doi:10.1016/S0045-6535(00)00505-1 (2001).
-
Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
-
Tsibul’skii, V. V., Tsibul’skaya, I. A., & Yaglitskaya, N. N.: Sampling and storage of samples for the gas-chromatographic Determination of aromatic-hydrocarbons as microimpurities in gases, J. Anal. Chem. USSR, 34, 1052–1055 (1979).
-
Turner, L. H., Chiew, Y. C., Ahlert, R. C., & Kosson, D. S.: Measuring vapor-liquid equilibrium for aqueous-organic systems: Review and a new technique, AIChE J., 42, 1772–1788, doi:10.1002/AIC.690420629 (1996).
-
Vane, L. M. & Giroux, E. L.: Henry’s law constants and micellar partitioning of volatile organic compounds in surfactant solutions, J. Chem. Eng. Data, 45, 38–47, doi:10.1021/JE990195U (2000).
-
Vitenberg, A. G., Ioffe, B. V., Dimitrova, Z. S., & Butaeva, I. L.: Determination of gas-liquid partition coefficients by means of gas chromatographic analysis, J. Chromatogr., 112, 319–327, doi:10.1016/S0021-9673(00)99964-3 (1975).
-
Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
-
Warner, H. P., Cohen, J. M., & Ireland, J. C.: Determination of Henry’s law constants of selected priority pollutants, Tech. rep., U.S. EPA, Municipal Environmental Research Laboratory, Wastewater Research Division, Cincinnati, Ohio, 45268, USA (1980).
-
Wasik, S. P. & Tsang, W.: Gas chromatographic determination of partition coefficients of some unsaturated hydrocarbons and their deuterated isomers in aqueous silver nitrate solutions, J. Phys. Chem., 74, 2970–2976, doi:10.1021/J100709A023 (1970).
-
Wauchope, R. D. & Haque, R.: Aqueous solutions of nonpolar compounds. Heat-capacity effects, Can. J. Chem., 50, 133–138, doi:10.1139/V72-022 (1972).
-
Welke, B., Ettlinger, K., & Riederer, M.: Sorption of volatile organic chemicals in plant surfaces, Environ. Sci. Technol., 32, 1099–1104, doi:10.1021/ES970763V (1998).
-
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
-
Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
-
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
-
Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
-
Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
-
Yu, H.-Z.: The use of Henry’s law constants in the determination of factors that influence VOC concentration in aqueous and gaseous phases in wastewater treatment plant, Master’s thesis, New Jersey Institute of Technology, USA (1992).
-
Yurteri, C., Ryan, D. F., Callow, J. J., & Gurol, M. D.: The effect of chemical composition of water on Henry’s law constant, J. Water Pollut. Control Fed., 59, 950–956 (1987).
-
Zhang, Z. & Pawliszyn, J.: Headspace solid-phase microextraction, Anal. Chem., 65, 1843–1852, doi:10.1021/AC00062A008 (1993).
-
Zhang, W., Huang, L., Yang, C., & Ying, W.: Experimental method for estimating Henry’s law constant of volatile organic compound, Asian J. Chem., 25, 2647–2650, doi:10.14233/AJCHEM.2013.13584 (2013).
Type
Table entries are sorted according to reliability of the data, listing
the most reliable type first: L) literature review, M) measured, V)
VP/AS = vapor pressure/aqueous solubility, R) recalculation, T)
thermodynamical calculation, X) original paper not available, C)
citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1
of Sander (2023) for further details.
Notes
1) |
A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented. |
11) |
Measured at high temperature and extrapolated to T⊖ = 298.15 K. |
12) |
Value at T = 293 K. |
14) |
Value at T = 310 K. |
20) |
Calculated using machine learning matrix completion methods (MCMs). |
21) |
Several references are given in the list of Henry's law constants but not assigned to specific species. |
24) |
Value at "room temperature". |
68) |
Modarresi et al. (2007) use different descriptors for their calculations. They conclude that a genetic algorithm/radial basis function network (GA/RBFN) is the best QSPR model. Only these results are shown here. |
71) |
Solubility in sea water. |
73) |
Value at T = 296 K. |
81) |
Value at T = 288 K. |
88) |
Value at T = 295 K. |
186) |
Experimental value, extracted from HENRYWIN. |
230) |
Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm. |
231) |
English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown. |
232) |
Value from the training dataset. |
233) |
Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details. |
238) |
Value given here as quoted by Gharagheizi et al. (2010). |
239) |
Calculated using linear free energy relationships (LFERs). |
240) |
Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC). |
241) |
Calculated using COSMOtherm. |
242) |
Temperature is not specified. |
243) |
Value from the training dataset. |
244) |
Calculated using the GROMHE model. |
245) |
Calculated using the SPARC approach. |
246) |
Calculated using the HENRYWIN method. |
247) |
Calculated using a combination of a group contribution method and neural networks. |
249) |
Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here. |
250) |
Value from the training set. |
259) |
Value given here as quoted by Dupeux et al. (2022). |
260) |
Calculated using the COSMO-RS method. |
278) |
Extrapolated from data measured between 40 °C and 80 °C. |
279) |
Data are taken from the report by Howe et al. (1987). |
299) |
Value given here as quoted by Staudinger and Roberts (1996). |
300) |
Value from the test set for true external validation. |
316) |
Values for the Henry's law constants shown in Fig. 3 of Martins et al. (2017) were obtained from Simão Pinho (personal communication, 2022). |
327) |
Average of all duplicates (H1); see Zhang et al. (2013) for details. |
328) |
Sieg et al. (2009) also provide data for supercooled water. Here, only data above 0 °C were used to calculate the temperature dependence. |
329) |
Extrapolated from data above 298 K. |
330) |
It was found that Hs changes with the concentration of the solution. |
336) |
Value at T = 302 K. |
338) |
Calculated using Gh and Hh from Table 2 in Andon et al. (1954). Note that the thermodynamic functions in that table are not based on their α in Table 1. Instead, the expression exp(−Gh/(RT)) yields the Henry's law constant Hsxp in the unit 1/atm. |
339) |
Values at 298 K in Tables C2 and C5 of Brockbank (2013) are inconsistent, with 11 % difference. |
340) |
Values for salt solutions are also available from this reference. |
341) |
The data from Görgényi et al. (2002) were fitted to the three-parameter equation: Hscp= exp( −468.28203 +24099.39947/T +66.85565 ln(T)) mol m−3 Pa−1, with T in K. |
342) |
Value obtained by applying the EPICS method; see Ayuttaya et al. (2001) for details. |
343) |
Value obtained by applying the static cell (linear form) method; see Ayuttaya et al. (2001) for details. |
344) |
Value obtained by applying the direct phase concentration ratio method; see Ayuttaya et al. (2001) for details. |
345) |
Value obtained by applying the static cell (nonlinear form) method; see Ayuttaya et al. (2001) for details. |
346) |
The data from Robbins et al. (1993) were fitted to the three-parameter equation: Hscp= exp( −573.76928 +28956.65188/T +82.51911 ln(T)) mol m−3 Pa−1, with T in K. |
347) |
The temperature dependence is recalculated using the data in Table 4 of Lamarche and Droste (1989) and not taken from their Table 5. |
348) |
Apparently, the vapor pressure of toluene was used to calculate its Henry's law constant. However, no source is provided. |
349) |
Value given here as quoted by Dewulf et al. (1995). |
The numbers of the notes are the same as
in Sander (2023). References cited in the notes can be
found here.
|
* * *
Search Henry's Law Database
* * *
Convert Henry's Law Constants
* * *
|