MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

NEW: Version 5.0.0 has been published in October 2023

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsOrganic species with oxygen (O)Aldehydes (RCHO) → ethanedial

FORMULA:OHCCHO
TRIVIAL NAME: glyoxal
CAS RN:107-22-2
STRUCTURE
(FROM NIST):
InChIKey:LEQAOMBKQFMDFZ-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
4.1×103 7500 Burkholder et al. (2019) L 462)
4.1×103 7500 Burkholder et al. (2015) L 462)
4.1×103 7500 Sander et al. (2011) L 462)
4.9×105 Kampf et al. (2013) M 462) 465)
4.1×103 7500 Ip et al. (2009) M 462)
Volkamer et al. (2009) M 466)
2.6×105 Kroll et al. (2005) M 462) 467)
3.6×103 Zhou and Mopper (1990) M 71) 462)
> 3.0×103 Betterton and Hoffmann (1988) M 462)
1.4×104 Lee and Zhou (1993) C 88) 462)
2.0×102 Keshavarz et al. (2022) Q
1.6×101 Duchowicz et al. (2020) Q 300)
8.9×101 Wang et al. (2017) Q 81) 239)
9.6 Wang et al. (2017) Q 81) 240)
1.2×10−2 Wang et al. (2017) Q 81) 241)
3.1×104 Raventos-Duran et al. (2010) Q 243) 244)
2.0×103 Raventos-Duran et al. (2010) Q 245)
2.5×101 Raventos-Duran et al. (2010) Q 246)
3.0×103 Duchowicz et al. (2020) ? 21) 186)
2.7×105 Woo and McNeill (2015) ? 468)

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Betterton, E. A. & Hoffmann, M. R.: Henry’s law constants of some environmentally important aldehydes, Environ. Sci. Technol., 22, 1415–1418, doi:10.1021/ES00177A004 (1988).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Ip, H. S. S., Huang, X. H. H., & Yu, J. Z.: Effective Henry’s law constants of glyoxal, glyoxylic acid, and glycolic acid, Geophys. Res. Lett., 36, L01802, doi:10.1029/2008GL036212 (2009).
  • Kampf, C. J., Waxman, E. M., Slowik, J. G., Dommen, J., Pfaffenberger, L., Praplan, A. P., Prévôt, A. S. H., Baltensperger, U., Hoffmann, T., & Volkamer, R.: Effective Henry’s law partitioning and the salting constant of glyoxal in aerosols containing sulfate, Environ. Sci. Technol., 47, 4236–4244, doi:10.1021/ES400083D (2013).
  • Keshavarz, M. H., Rezaei, M., & Hosseini, S. H.: A simple approach for prediction of Henry’s law constant of pesticides, solvents, aromatic hydrocarbons, and persistent pollutants without using complex computer codes and descriptors, Process Saf. Environ. Prot., 162, 867–877, doi:10.1016/J.PSEP.2022.04.045 (2022).
  • Kroll, J. H., Ng, N. L., Murphy, S. M., Varutbangkul, V., Flagan, R. C., & Seinfeld, J. H.: Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds, J. Geophys. Res., 110, D23207, doi:10.1029/2005JD006004 (2005).
  • Lee, Y.-N. & Zhou, X.: Method for the determination of some soluble atmospheric carbonyl compounds, Environ. Sci. Technol., 27, 749–756, doi:10.1021/ES00041A020 (1993).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
  • Volkamer, R., Ziemann, P. J., & Molina, M. J.: Secondary organic aerosol formation from acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase, Atmos. Chem. Phys., 9, 1907–1928, doi:10.5194/ACP-9-1907-2009 (2009).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Woo, J. L. & McNeill, V. F.: simpleGAMMA v1.0 – a reduced model of secondary organic aerosol formation in the aqueous aerosol phase (aaSOA), Geosci. Model Dev., 8, 1821–1829, doi:10.5194/GMD-8-1821-2015 (2015).
  • Zhou, X. & Mopper, K.: Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; Implications for air-sea exchange, Environ. Sci. Technol., 24, 1864–1869, doi:10.1021/ES00082A013 (1990).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

21) Several references are given in the list of Henry's law constants but not assigned to specific species.
71) Solubility in sea water.
81) Value at T = 288 K.
88) Value at T = 295 K.
186) Experimental value, extracted from HENRYWIN.
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
243) Value from the training dataset.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
300) Value from the test set for true external validation.
462) Effective value that takes into account the hydration of the aldehyde:
Hs= ([RCHO]+[RCH(OH)2])/p(RCHO).
465) Value suitable for the conditions of a case study in Mexico City.
466) Volkamer et al. (2009) found average effective Henry's law constants for CHOCHO in the range 1.6×106 mol m−3 Pa−1 < Hscp < 5.9×106 mol m−3 Pa−1 for solutions containing ammonium sulfate and/or fulvic acid. A salting-in effect by fulvic acid was observed even in the absence of sulfate.
467) Solubility in sulfate aerosol.
468) Woo and McNeill (2015) say that the Henry's law constant was updated based on advances in the literature since McNeill et al. (2012) but do not provide further details.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *