MPG

Henry's Law Constants

www.henrys-law.org

Rolf Sander

Atmospheric Chemistry Division

Max-Planck Institute for Chemistry
Mainz, Germany


Home

Henry's Law Constants

Notes

References

Download

Errata

Contact, Imprint, Acknowledgements


When referring to the compilation of Henry's Law Constants, please cite this publication:

R. Sander: Compilation of Henry's law constants (version 5.0.0) for water as solvent, Atmos. Chem. Phys., 23, 10901-12440 (2023), doi:10.5194/acp-23-10901-2023

The publication from 2023 replaces that from 2015, which is now obsolete. Please do not cite the old paper anymore.


Henry's Law ConstantsHydrocarbons (C, H)Alkanes → butane

FORMULA:C4H10
CAS RN:106-97-8
STRUCTURE
(FROM NIST):
InChIKey:IJDNQMDRQITEOD-UHFFFAOYSA-N

Hscp d ln Hs cp / d (1/T) References Type Notes
[mol/(m3Pa)] [K]
1.2×10−5 3100 Burkholder et al. (2019) L 1) 254)
1.2×10−5 3100 Burkholder et al. (2015) L 1) 255)
1.2×10−5 3100 Sander et al. (2011) L 1) 256)
1.2×10−5 3100 Sander et al. (2006) L 1) 257)
1.2×10−5 3100 Plyasunov and Shock (2000) L
1.3×10−5 3100 Abraham and Matteoli (1988) L
1.2×10−5 3000 Hayduk (1986) L 1)
1.0×10−5 Mackay and Shiu (1981) L
1.2×10−5 3100 Wilhelm et al. (1977) L
1.3×10−5 2300 Carroll et al. (1997) M 1)
8.0×10−6 Guitart et al. (1989) M 14)
1.2×10−5 3200 Ben-Naim and Battino (1985) M
1.1×10−5 McAuliffe (1966) M 226)
1.3×10−5 3200 Wetlaufer et al. (1964) M
1.1×10−5 McAuliffe (1963) M 227)
1.1×10−5 2900 Morrison and Billett (1952) M 258)
1.0×10−5 Duchowicz et al. (2020) V 187)
1.0×10−5 HSDB (2015) V
1.0×10−5 Mackay et al. (2006a) V
1.0×10−5 Mackay et al. (1993) V
9.6×10−6 Hwang et al. (1992) V
1.1×10−5 Hine and Mookerjee (1975) V
1.1×10−5 2900 Wauchope and Haque (1972) V
1.2×10−5 3100 Wauchope and Haque (1972) V
1.2×10−5 Irmann (1965) V
4.8×10−5 Butler and Ramchandani (1935) V
1.1×10−5 Yaws (2003) X 259)
1.1×10−5 Yaws (2003) X 238)
1.1×10−5 Deno and Berkheimer (1960) C
1.6×10−5 Dupeux et al. (2022) Q 260)
1.6×10−5 Hayer et al. (2022) Q 20)
4.4×10−4 Duchowicz et al. (2020) Q
7.8×10−5 Wang et al. (2017) Q 81) 239)
1.1×10−5 Wang et al. (2017) Q 81) 240)
1.8×10−5 Wang et al. (2017) Q 81) 241)
1.1×10−5 Li et al. (2014) Q 242)
4.6×10−6 Gharagheizi et al. (2012) Q
1.2×10−5 Raventos-Duran et al. (2010) Q 243) 244)
1.6×10−5 Raventos-Duran et al. (2010) Q 245)
9.9×10−6 Raventos-Duran et al. (2010) Q 246)
1.4×10−5 Gharagheizi et al. (2010) Q 247)
1.2×10−5 Hilal et al. (2008) Q
3300 Kühne et al. (2005) Q
3.5×10−6 Modarresi et al. (2005) Q 248)
1.1×10−5 Yaffe et al. (2003) Q 249) 250)
1.6×10−5 Yao et al. (2002) Q 230)
1.0×10−5 English and Carroll (2001) Q 231) 261)
1.5×10−5 Katritzky et al. (1998) Q
1.3×10−5 Suzuki et al. (1992) Q 233)
1.2×10−5 Nirmalakhandan and Speece (1988) Q
1.2×10−5 Irmann (1965) Q
3300 Kühne et al. (2005) ?
1.1×10−5 Yaws (1999) ? 21)
1.2×10−5 3000 Yaws et al. (1999) ? 21)
1.1×10−5 Yaws and Yang (1992) ? 21)
1.2×10−5 Abraham et al. (1990) ?

Data

The first column contains Henry's law solubility constant Hscp at the reference temperature of 298.15 K.
The second column contains the temperature dependence d ln Hs cp / d (1/T), also at the reference temperature.

References

  • Abraham, M. H. & Matteoli, E.: The temperature variation of the hydrophobic effect, J. Chem. Soc. Faraday Trans. 1, 84, 1985–2000, doi:10.1039/F19888401985 (1988).
  • Abraham, M. H., Whiting, G. S., Fuchs, R., & Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, pp. 291–300, doi:10.1039/P29900000291 (1990).
  • Ben-Naim, A. & Battino, R.: Solubilization of methane, ethane, propane and n-butane in aqueous solutions of sodium dodecylsulfate, J. Solution Chem., 14, 245–253, doi:10.1007/BF00644456 (1985).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2015).
  • Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2019).
  • Butler, J. A. V. & Ramchandani, C. N.: The solubility of non-electrolytes. Part II. The influence of the polar group on the free energy of hydration of aliphatic compounds, J. Chem. Soc., pp. 952–955, doi:10.1039/JR9350000952 (1935).
  • Carroll, J. J., Jou, F.-Y., & Mather, A. E.: Fluid phase equilibria in the system n-butane + water, Fluid Phase Equilib., 140, 157–169, doi:10.1016/S0378-3812(97)00199-4 (1997).
  • Deno, N. C. & Berkheimer, H. E.: Activity coefficients as a functon of structure and media, J. Chem. Eng. Data, 5, 1–5, doi:10.1021/JE60005A001 (1960).
  • Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., & Fioressi, S. E.: QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des., 154, 115–121, doi:10.1016/J.CHERD.2019.12.009 (2020).
  • Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., & Nardello-Rataj, V.: COSMO-RS as an effective tool for predicting the physicochemical properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120, doi:10.1002/FFJ.3690 (2022).
  • English, N. J. & Carroll, D. G.: Prediction of Henry’s law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, doi:10.1021/CI010361D (2001).
  • Gharagheizi, F., Abbasi, R., & Tirandazi, B.: Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based model, Ind. Eng. Chem. Res., 49, 10 149–10 152, doi:10.1021/IE101532E (2010).
  • Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D.: Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, J. Chem. Thermodyn., 47, 295–299, doi:10.1016/J.JCT.2011.11.015 (2012).
  • Guitart, R., Puigdemont, F., & Arboix, M.: Rapid headspace gas chromatographic method for the determination of liquid/gas partition coefficients, J. Chromatogr., 491, 271–280, doi:10.1016/S0378-4347(00)82845-5 (1989).
  • Hayduk, W.: IUPAC Solubility Data Series, Volume 24, Propane, Butane and 2-Methylpropane, Pergamon Press, Oxford, ISBN 008029202X (1986).
  • Hayer, N., Jirasek, F., & Hasse, H.: Prediction of Henry’s law constants by matrix completion, AIChE J., 68, e17 753, doi:10.1002/AIC.17753 (2022).
  • Hilal, S. H., Ayyampalayam, S. N., & Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry’s law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, doi:10.1021/ES8005783 (2008).
  • Hine, J. & Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, doi:10.1021/JO00891A006 (1975).
  • HSDB: Hazardous Substances Data Bank, TOXicology data NETwork (TOXNET), National Library of Medicine (US), URL https://www.nlm.nih.gov/toxnet/Accessing_HSDB_Content_from_PubChem.html (2015).
  • Hwang, Y.-L., Olson, J. D., & Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, doi:10.1021/IE00007A022 (1992).
  • Irmann, F.: Eine einfache Korrelation zwischen Wasserlöslichkeit und Struktur von Kohlenwasserstoffen und Halogenkohlenwasserstoffen, Chem.-Ing.-Tech., 37, 789–798, doi:10.1002/CITE.330370802 (1965).
  • Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., & Karelson, M.: QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725, doi:10.1021/CI980022T (1998).
  • Kühne, R., Ebert, R.-U., & Schüürmann, G.: Prediction of the temperature dependency of Henry’s law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, doi:10.1021/ES050527H (2005).
  • Li, H., Wang, X., Yi, T., Xu, Z., & Liu, X.: Prediction of Henry’s law constants for organic compounds using multilayer feedforward neural networks based on linear salvation energy relationship, J. Chem. Pharm. Res., 6, 1557–1564 (2014).
  • Mackay, D. & Shiu, W. Y.: A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, doi:10.1063/1.555654 (1981).
  • Mackay, D., Shiu, W. Y., & Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton, ISBN 0873719735 (1993).
  • Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. I of Introduction and Hydrocarbons, CRC/Taylor & Francis Group, doi:10.1201/9781420044393 (2006a).
  • McAuliffe, C.: Solubility in water of C1-C9 hydrocarbons, Nature, 200, 1092–1093, doi:10.1038/2001092A0 (1963).
  • McAuliffe, C.: Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin, and aromatic hydrocarbons, J. Phys. Chem., 70, 1267–1275, doi:10.1021/J100876A049 (1966).
  • Modarresi, H., Modarress, H., & Dearden, J. C.: Henry’s law constant of hydrocarbons in air–water system: The cavity ovality effect on the non-electrostatic contribution term of solvation free energy, SAR QSAR Environ. Res., 16, 461–482, doi:10.1080/10659360500319869 (2005).
  • Morrison, T. J. & Billett, F.: 730. The salting-out of non-electrolytes. Part II. The effect of variation in non-electrolyte, J. Chem. Soc., pp. 3819–3822, doi:10.1039/JR9520003819 (1952).
  • Nirmalakhandan, N. N. & Speece, R. E.: QSAR model for predicting Henry’s constant, Environ. Sci. Technol., 22, 1349–1357, doi:10.1021/ES00176A016 (1988).
  • Plyasunov, A. V. & Shock, E. L.: Thermodynamic functions of hydration of hydrocarbons at 298.15K and 0.1MPa, Geochim. Cosmochim. Acta, 64, 439–468, doi:10.1016/S0016-7037(99)00330-0 (2000).
  • Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., & Aumont, B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/ACP-10-7643-2010 (2010).
  • Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, URL https://jpldataeval.jpl.nasa.gov (2006).
  • Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., & Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, URL https://jpldataeval.jpl.nasa.gov (2011).
  • Suzuki, T., Ohtaguchi, K., & Koide, K.: Application of principal components analysis to calculate Henry’s constant from molecular structure, Comput. Chem., 16, 41–52, doi:10.1016/0097-8485(92)85007-L (1992).
  • Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., & Wania, F.: Uncertain Henry’s law constants compromise equilibrium partitioning calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17, 7529–7540, doi:10.5194/ACP-17-7529-2017 (2017).
  • Wauchope, R. D. & Haque, R.: Aqueous solutions of nonpolar compounds. Heat-capacity effects, Can. J. Chem., 50, 133–138, doi:10.1139/V72-022 (1972).
  • Wetlaufer, D. B., Malik, S. K., Stoller, L., & Coffin, R. L.: Nonpolar group participation in the denaturation of proteins by urea and guanidinium salts. Model compound studies, J. Am. Chem. Soc., 86, 508–514, doi:10.1021/JA01057A045 (1964).
  • Wilhelm, E., Battino, R., & Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, doi:10.1021/CR60306A003 (1977).
  • Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., & Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry’s law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, doi:10.1021/CI025561J (2003).
  • Yao, X., aand X. Zhang, M. L., Hu, Z., & Fan, B.: Radial basis function network-based quantitative structure-property relationship for the prediction of Henry’s law constant, Anal. Chim. Acta, 462, 101–117, doi:10.1016/S0003-2670(02)00273-8 (2002).
  • Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN 0070734011 (1999).
  • Yaws, C. L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447 (2003).
  • Yaws, C. L. & Yang, H.-C.: Henry’s law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, TX, ISBN 0884150313 (1992).
  • Yaws, C. L., Hopper, J. R., Wang, X., Rathinsamy, A. K., & Pike, R. W.: Calculating solubility & Henry’s law constants for gases in water, Chem. Eng., pp. 102–105 (1999).

Type

Table entries are sorted according to reliability of the data, listing the most reliable type first: L) literature review, M) measured, V) VP/AS = vapor pressure/aqueous solubility, R) recalculation, T) thermodynamical calculation, X) original paper not available, C) citation, Q) QSPR, E) estimate, ?) unknown, W) wrong. See Section 3.1 of Sander (2023) for further details.

Notes

1) A detailed temperature dependence with more than one parameter is available in the original publication. Here, only the temperature dependence at 298.15 K according to the van 't Hoff equation is presented.
14) Value at T = 310 K.
20) Calculated using machine learning matrix completion methods (MCMs).
21) Several references are given in the list of Henry's law constants but not assigned to specific species.
81) Value at T = 288 K.
187) Estimation based on the quotient between vapor pressure and water solubility, extracted from HENRYWIN.
226) The same value was also published in McAuliffe (1963).
227) The same value was also published in McAuliffe (1966).
230) Yao et al. (2002) compared two QSPR methods and found that radial basis function networks (RBFNs) are better than multiple linear regression. In their paper, they provide neither a definition nor the unit of their Henry's law constants. Comparing the values with those that they cite from Yaws (1999), it is assumed that they use the variant Hvpx and the unit atm.
231) English and Carroll (2001) provide several calculations. Here, the preferred value with explicit inclusion of hydrogen bonding parameters from a neural network is shown.
233) Calculated with a principal component analysis (PCA); see Suzuki et al. (1992) for details.
238) Value given here as quoted by Gharagheizi et al. (2010).
239) Calculated using linear free energy relationships (LFERs).
240) Calculated using SPARC Performs Automated Reasoning in Chemistry (SPARC).
241) Calculated using COSMOtherm.
242) Temperature is not specified.
243) Value from the training dataset.
244) Calculated using the GROMHE model.
245) Calculated using the SPARC approach.
246) Calculated using the HENRYWIN method.
247) Calculated using a combination of a group contribution method and neural networks.
248) Modarresi et al. (2005) use different descriptors for the QSPR models. They conclude that their "COSA" method and the artificial neural network (ANN) are best. However, as COSA is not ideal for hydrocarbons with low solubility, only results obtained with ANN are shown here.
249) Yaffe et al. (2003) present QSPR results calculated with the fuzzy ARTMAP (FAM) and with the back-propagation (BK-Pr) method. They conclude that FAM is better. Only the FAM results are shown here.
250) Value from the training set.
254) The H298 and A, B, C data listed in Table 5-4 of Burkholder et al. (2019) are inconsistent, with 14 % difference.
255) The H298 and A, B, C data listed in Table 5-4 of Burkholder et al. (2015) are inconsistent, with 14 % difference.
256) The H298 and A, B, C data listed in Table 5.4 of Sander et al. (2011) are inconsistent, with 14 % difference.
257) The H298 and A, B, C data listed in Table 5.4 of Sander et al. (2006) are inconsistent, with 14 % difference.
258) The data from Morrison and Billett (1952) were fitted to the three-parameter equation: Hscp= exp( −257.40529 +13425.82235/T +35.27658 ln(T)) mol m−3 Pa−1, with T in K.
259) Value given here as quoted by Dupeux et al. (2022).
260) Calculated using the COSMO-RS method.
261) Value from the validation dataset.

The numbers of the notes are the same as in Sander (2023). References cited in the notes can be found here.

* * *

Search Henry's Law Database

Species Search:

Identifier Search:

Reference Search:

* * *

Convert Henry's Law Constants

Convert:

* * *